Metamath Proof Explorer


Theorem chfacfpmmulcl

Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a 𝐴 = ( 𝑁 Mat 𝑅 )
cayhamlem1.b 𝐵 = ( Base ‘ 𝐴 )
cayhamlem1.p 𝑃 = ( Poly1𝑅 )
cayhamlem1.y 𝑌 = ( 𝑁 Mat 𝑃 )
cayhamlem1.r × = ( .r𝑌 )
cayhamlem1.s = ( -g𝑌 )
cayhamlem1.0 0 = ( 0g𝑌 )
cayhamlem1.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cayhamlem1.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
cayhamlem1.e = ( .g ‘ ( mulGrp ‘ 𝑌 ) )
Assertion chfacfpmmulcl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ( 𝑇𝑀 ) ) × ( 𝐺𝐾 ) ) ∈ ( Base ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cayhamlem1.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cayhamlem1.b 𝐵 = ( Base ‘ 𝐴 )
3 cayhamlem1.p 𝑃 = ( Poly1𝑅 )
4 cayhamlem1.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cayhamlem1.r × = ( .r𝑌 )
6 cayhamlem1.s = ( -g𝑌 )
7 cayhamlem1.0 0 = ( 0g𝑌 )
8 cayhamlem1.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
9 cayhamlem1.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
10 cayhamlem1.e = ( .g ‘ ( mulGrp ‘ 𝑌 ) )
11 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
12 3 4 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
13 11 12 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring )
14 13 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Ring )
15 14 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝑌 ∈ Ring )
16 eqid ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 )
17 16 ringmgp ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd )
18 14 17 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd )
19 18 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd )
20 simp3 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 )
21 8 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
22 11 21 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
23 22 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
24 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
25 16 24 mgpbas ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) )
26 25 10 mulgnn0cl ( ( ( mulGrp ‘ 𝑌 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝐾 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
27 19 20 23 26 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
28 1 2 3 4 5 6 7 8 9 chfacfisf ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) )
29 11 28 syl3anl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) )
30 29 3adant3 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) )
31 30 20 ffvelrnd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺𝐾 ) ∈ ( Base ‘ 𝑌 ) )
32 24 5 ringcl ( ( 𝑌 ∈ Ring ∧ ( 𝐾 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝐺𝐾 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝐾 ( 𝑇𝑀 ) ) × ( 𝐺𝐾 ) ) ∈ ( Base ‘ 𝑌 ) )
33 15 27 31 32 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ( 𝑇𝑀 ) ) × ( 𝐺𝐾 ) ) ∈ ( Base ‘ 𝑌 ) )