Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
12 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝑌 ∈ Ring ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
17 |
16
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
18 |
14 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
20 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
21 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
22 |
11 21
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
25 |
16 24
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
26 |
25 10
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑌 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
27 |
19 20 23 26
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
28 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
29 |
11 28
|
syl3anl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
30 |
29
|
3adant3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
31 |
30 20
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑌 ) ) |
32 |
24 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑌 ) ) |
33 |
15 27 31 32
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑌 ) ) |