Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
7
|
fvexi |
⊢ 0 ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 0 ∈ V ) |
13 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ V ) |
14 |
|
nnnn0 |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
16 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
17 |
16
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 1 ∈ ℕ0 ) |
18 |
15 17
|
nn0addcld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ0 ) |
19 |
|
vex |
⊢ 𝑘 ∈ V |
20 |
|
csbov12g |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ⦋ 𝑘 / 𝑖 ⦌ ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ⦋ 𝑘 / 𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) ) ) |
21 |
|
nfcvd |
⊢ ( 𝑘 ∈ V → Ⅎ 𝑖 ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
23 |
21 22
|
csbiegf |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑖 ⦌ ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
24 |
|
csbfv |
⊢ ⦋ 𝑘 / 𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) |
25 |
24
|
a1i |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) ) |
26 |
23 25
|
oveq12d |
⊢ ( 𝑘 ∈ V → ( ⦋ 𝑘 / 𝑖 ⦌ ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ⦋ 𝑘 / 𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) ) = ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑘 ) ) ) |
27 |
20 26
|
eqtrd |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑘 ) ) ) |
28 |
19 27
|
mp1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑘 ) ) ) |
29 |
|
simplll |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ) |
30 |
|
simpllr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) |
31 |
14
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑠 ∈ ℕ0 ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑠 ∈ ℕ0 ) |
33 |
32
|
nn0zd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑠 ∈ ℤ ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑠 ∈ ℤ ) |
35 |
|
2z |
⊢ 2 ∈ ℤ |
36 |
35
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 2 ∈ ℤ ) |
37 |
34 36
|
zaddcld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑠 + 2 ) ∈ ℤ ) |
38 |
|
simplr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ∈ ℕ0 ) |
39 |
38
|
nn0zd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ∈ ℤ ) |
40 |
|
peano2nn0 |
⊢ ( 𝑠 ∈ ℕ0 → ( 𝑠 + 1 ) ∈ ℕ0 ) |
41 |
14 40
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℕ0 ) |
42 |
41
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ0 ) |
43 |
42
|
nn0zd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℤ ) |
44 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
45 |
|
zltp1le |
⊢ ( ( ( 𝑠 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑠 + 1 ) < 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
46 |
43 44 45
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 + 1 ) < 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
47 |
46
|
biimpa |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) |
48 |
|
nncn |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℂ ) |
49 |
|
add1p1 |
⊢ ( 𝑠 ∈ ℂ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
50 |
48 49
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
51 |
50
|
breq1d |
⊢ ( 𝑠 ∈ ℕ → ( ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ↔ ( 𝑠 + 2 ) ≤ 𝑘 ) ) |
52 |
51
|
bicomd |
⊢ ( 𝑠 ∈ ℕ → ( ( 𝑠 + 2 ) ≤ 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( 𝑠 + 2 ) ≤ 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 + 2 ) ≤ 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
55 |
54
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( ( 𝑠 + 2 ) ≤ 𝑘 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝑘 ) ) |
56 |
47 55
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑠 + 2 ) ≤ 𝑘 ) |
57 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ↔ ( ( 𝑠 + 2 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ( 𝑠 + 2 ) ≤ 𝑘 ) ) |
58 |
37 39 56 57
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) |
59 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmul0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
60 |
29 30 58 59
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
61 |
28 60
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) |
62 |
61
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 + 1 ) < 𝑘 → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) ) |
63 |
62
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝑠 + 1 ) < 𝑘 → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) ) |
64 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑠 + 1 ) → ( 𝑥 < 𝑘 ↔ ( 𝑠 + 1 ) < 𝑘 ) ) |
65 |
64
|
rspceaimv |
⊢ ( ( ( 𝑠 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝑠 + 1 ) < 𝑘 → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) ) → ∃ 𝑥 ∈ ℕ0 ∀ 𝑘 ∈ ℕ0 ( 𝑥 < 𝑘 → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) ) |
66 |
18 63 65
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ∃ 𝑥 ∈ ℕ0 ∀ 𝑘 ∈ ℕ0 ( 𝑥 < 𝑘 → ⦋ 𝑘 / 𝑖 ⦌ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) ) |
67 |
12 13 66
|
mptnn0fsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) finSupp 0 ) |