Step |
Hyp |
Ref |
Expression |
1 |
|
chfacfisf.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
chfacfisf.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
chfacfisf.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
chfacfisf.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
chfacfisf.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
chfacfisf.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
chfacfisf.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
chfacfisf.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
chfacfisf.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
chfacfscmulcl.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
11 |
|
chfacfscmulcl.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
12 |
|
chfacfscmulcl.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
3 4
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod ) |
15 |
13 14
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ LMod ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝑌 ∈ LMod ) |
18 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
19 |
13 18
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
21 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
22 |
21
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
23 |
20 22
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
25 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
26 |
13
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
28 |
10 3 27
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
29 |
26 28
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
31 |
21 27
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
32 |
31 12
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐾 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
24 25 30 32
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
34 |
3
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
35 |
34
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
36 |
35
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
37 |
4
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
40 |
39
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
42 |
33 41
|
eleqtrrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
43 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
44 |
13 43
|
syl3anl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
45 |
44
|
3adant3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
46 |
45 25
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑌 ) ) |
47 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
48 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
49 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
50 |
47 48 11 49
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝐾 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝐾 ↑ 𝑋 ) · ( 𝐺 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑌 ) ) |
51 |
17 42 46 50
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ↑ 𝑋 ) · ( 𝐺 ‘ 𝐾 ) ) ∈ ( Base ‘ 𝑌 ) ) |