Metamath Proof Explorer


Theorem chincl

Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chincl ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ) ∈ C )

Proof

Step Hyp Ref Expression
1 ineq1 ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( 𝐴𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) )
2 1 eleq1d ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( ( 𝐴𝐵 ) ∈ C ↔ ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ∈ C ) )
3 ineq2 ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) = ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) )
4 3 eleq1d ( 𝐵 = if ( 𝐵C , 𝐵 , ℋ ) → ( ( if ( 𝐴C , 𝐴 , ℋ ) ∩ 𝐵 ) ∈ C ↔ ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) ∈ C ) )
5 ifchhv if ( 𝐴C , 𝐴 , ℋ ) ∈ C
6 ifchhv if ( 𝐵C , 𝐵 , ℋ ) ∈ C
7 5 6 chincli ( if ( 𝐴C , 𝐴 , ℋ ) ∩ if ( 𝐵C , 𝐵 , ℋ ) ) ∈ C
8 2 4 7 dedth2h ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ) ∈ C )