Metamath Proof Explorer


Theorem chincli

Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chincli ( 𝐴𝐵 ) ∈ C

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 elexi 𝐴 ∈ V
4 2 elexi 𝐵 ∈ V
5 3 4 intpr { 𝐴 , 𝐵 } = ( 𝐴𝐵 )
6 1 2 pm3.2i ( 𝐴C𝐵C )
7 3 4 prss ( ( 𝐴C𝐵C ) ↔ { 𝐴 , 𝐵 } ⊆ C )
8 6 7 mpbi { 𝐴 , 𝐵 } ⊆ C
9 3 prnz { 𝐴 , 𝐵 } ≠ ∅
10 8 9 pm3.2i ( { 𝐴 , 𝐵 } ⊆ C ∧ { 𝐴 , 𝐵 } ≠ ∅ )
11 10 chintcli { 𝐴 , 𝐵 } ∈ C
12 5 11 eqeltrri ( 𝐴𝐵 ) ∈ C