Metamath Proof Explorer


Theorem chintcl

Description: The intersection (infimum) of a nonempty subset of CH belongs to CH . Part of Theorem 3.13 of Beran p. 108. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion chintcl ( ( 𝐴C𝐴 ≠ ∅ ) → 𝐴C )

Proof

Step Hyp Ref Expression
1 inteq ( 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) )
2 1 eleq1d ( 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( 𝐴C if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ∈ C ) )
3 sseq1 ( 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( 𝐴C ↔ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ⊆ C ) )
4 neeq1 ( 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( 𝐴 ≠ ∅ ↔ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ≠ ∅ ) )
5 3 4 anbi12d ( 𝐴 = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( ( 𝐴C𝐴 ≠ ∅ ) ↔ ( if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ⊆ C ∧ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ≠ ∅ ) ) )
6 sseq1 ( C = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( CC ↔ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ⊆ C ) )
7 neeq1 ( C = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( C ≠ ∅ ↔ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ≠ ∅ ) )
8 6 7 anbi12d ( C = if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) → ( ( CCC ≠ ∅ ) ↔ ( if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ⊆ C ∧ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ≠ ∅ ) ) )
9 ssid CC
10 h0elch 0C
11 10 ne0ii C ≠ ∅
12 9 11 pm3.2i ( CCC ≠ ∅ )
13 5 8 12 elimhyp ( if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ⊆ C ∧ if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ≠ ∅ )
14 13 chintcli if ( ( 𝐴C𝐴 ≠ ∅ ) , 𝐴 , C ) ∈ C
15 2 14 dedth ( ( 𝐴C𝐴 ≠ ∅ ) → 𝐴C )