| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chintcl.1 | ⊢ ( 𝐴  ⊆   Cℋ   ∧  𝐴  ≠  ∅ ) | 
						
							| 2 | 1 | simpli | ⊢ 𝐴  ⊆   Cℋ | 
						
							| 3 |  | chsssh | ⊢  Cℋ   ⊆   Sℋ | 
						
							| 4 | 2 3 | sstri | ⊢ 𝐴  ⊆   Sℋ | 
						
							| 5 | 1 | simpri | ⊢ 𝐴  ≠  ∅ | 
						
							| 6 | 4 5 | pm3.2i | ⊢ ( 𝐴  ⊆   Sℋ   ∧  𝐴  ≠  ∅ ) | 
						
							| 7 | 6 | shintcli | ⊢ ∩  𝐴  ∈   Sℋ | 
						
							| 8 | 2 | sseli | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈   Cℋ  ) | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 9 | chlimi | ⊢ ( ( 𝑦  ∈   Cℋ   ∧  𝑓 : ℕ ⟶ 𝑦  ∧  𝑓  ⇝𝑣  𝑥 )  →  𝑥  ∈  𝑦 ) | 
						
							| 11 | 10 | 3exp | ⊢ ( 𝑦  ∈   Cℋ   →  ( 𝑓 : ℕ ⟶ 𝑦  →  ( 𝑓  ⇝𝑣  𝑥  →  𝑥  ∈  𝑦 ) ) ) | 
						
							| 12 | 11 | com3r | ⊢ ( 𝑓  ⇝𝑣  𝑥  →  ( 𝑦  ∈   Cℋ   →  ( 𝑓 : ℕ ⟶ 𝑦  →  𝑥  ∈  𝑦 ) ) ) | 
						
							| 13 | 8 12 | syl5 | ⊢ ( 𝑓  ⇝𝑣  𝑥  →  ( 𝑦  ∈  𝐴  →  ( 𝑓 : ℕ ⟶ 𝑦  →  𝑥  ∈  𝑦 ) ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝑓  ⇝𝑣  𝑥  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 : ℕ ⟶ 𝑦  →  𝑥  ∈  𝑦 ) ) | 
						
							| 15 | 14 | ralimdva | ⊢ ( 𝑓  ⇝𝑣  𝑥  →  ( ∀ 𝑦  ∈  𝐴 𝑓 : ℕ ⟶ 𝑦  →  ∀ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) ) | 
						
							| 16 | 5 | fint | ⊢ ( 𝑓 : ℕ ⟶ ∩  𝐴  ↔  ∀ 𝑦  ∈  𝐴 𝑓 : ℕ ⟶ 𝑦 ) | 
						
							| 17 | 9 | elint2 | ⊢ ( 𝑥  ∈  ∩  𝐴  ↔  ∀ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 18 | 15 16 17 | 3imtr4g | ⊢ ( 𝑓  ⇝𝑣  𝑥  →  ( 𝑓 : ℕ ⟶ ∩  𝐴  →  𝑥  ∈  ∩  𝐴 ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( 𝑓 : ℕ ⟶ ∩  𝐴  ∧  𝑓  ⇝𝑣  𝑥 )  →  𝑥  ∈  ∩  𝐴 ) | 
						
							| 20 | 19 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ∩  𝐴  ∧  𝑓  ⇝𝑣  𝑥 )  →  𝑥  ∈  ∩  𝐴 ) | 
						
							| 21 |  | isch2 | ⊢ ( ∩  𝐴  ∈   Cℋ   ↔  ( ∩  𝐴  ∈   Sℋ   ∧  ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ∩  𝐴  ∧  𝑓  ⇝𝑣  𝑥 )  →  𝑥  ∈  ∩  𝐴 ) ) ) | 
						
							| 22 | 7 20 21 | mpbir2an | ⊢ ∩  𝐴  ∈   Cℋ |