Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj0 | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∨ℋ 0ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 0ℋ ) ) | |
| 2 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 0ℋ ) = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) |
| 4 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 5 | 4 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 6 | 5 | chj0i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 0ℋ ) = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) |
| 7 | 3 6 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 ) |