Metamath Proof Explorer


Theorem chj0

Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chj0 ( 𝐴C → ( 𝐴 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 0 ) = ( if ( 𝐴C , 𝐴 , 0 ) ∨ 0 ) )
2 id ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → 𝐴 = if ( 𝐴C , 𝐴 , 0 ) )
3 1 2 eqeq12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 0 ) = 𝐴 ↔ ( if ( 𝐴C , 𝐴 , 0 ) ∨ 0 ) = if ( 𝐴C , 𝐴 , 0 ) ) )
4 h0elch 0C
5 4 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
6 5 chj0i ( if ( 𝐴C , 𝐴 , 0 ) ∨ 0 ) = if ( 𝐴C , 𝐴 , 0 )
7 3 6 dedth ( 𝐴C → ( 𝐴 0 ) = 𝐴 )