Metamath Proof Explorer


Theorem chj00i

Description: Two Hilbert lattice elements are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chj00i ( ( 𝐴 = 0𝐵 = 0 ) ↔ ( 𝐴 𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 oveq12 ( ( 𝐴 = 0𝐵 = 0 ) → ( 𝐴 𝐵 ) = ( 0 0 ) )
4 h0elch 0C
5 4 chj0i ( 0 0 ) = 0
6 3 5 eqtrdi ( ( 𝐴 = 0𝐵 = 0 ) → ( 𝐴 𝐵 ) = 0 )
7 1 2 chub1i 𝐴 ⊆ ( 𝐴 𝐵 )
8 sseq2 ( ( 𝐴 𝐵 ) = 0 → ( 𝐴 ⊆ ( 𝐴 𝐵 ) ↔ 𝐴 ⊆ 0 ) )
9 7 8 mpbii ( ( 𝐴 𝐵 ) = 0𝐴 ⊆ 0 )
10 1 chle0i ( 𝐴 ⊆ 0𝐴 = 0 )
11 9 10 sylib ( ( 𝐴 𝐵 ) = 0𝐴 = 0 )
12 2 1 chub2i 𝐵 ⊆ ( 𝐴 𝐵 )
13 sseq2 ( ( 𝐴 𝐵 ) = 0 → ( 𝐵 ⊆ ( 𝐴 𝐵 ) ↔ 𝐵 ⊆ 0 ) )
14 12 13 mpbii ( ( 𝐴 𝐵 ) = 0𝐵 ⊆ 0 )
15 2 chle0i ( 𝐵 ⊆ 0𝐵 = 0 )
16 14 15 sylib ( ( 𝐴 𝐵 ) = 0𝐵 = 0 )
17 11 16 jca ( ( 𝐴 𝐵 ) = 0 → ( 𝐴 = 0𝐵 = 0 ) )
18 6 17 impbii ( ( 𝐴 = 0𝐵 = 0 ) ↔ ( 𝐴 𝐵 ) = 0 )