| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
oveq12 |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 0ℋ ∨ℋ 0ℋ ) ) |
| 4 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
| 5 |
4
|
chj0i |
⊢ ( 0ℋ ∨ℋ 0ℋ ) = 0ℋ |
| 6 |
3 5
|
eqtrdi |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ ) |
| 7 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 8 |
|
sseq2 |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝐴 ⊆ 0ℋ ) ) |
| 9 |
7 8
|
mpbii |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐴 ⊆ 0ℋ ) |
| 10 |
1
|
chle0i |
⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 11 |
9 10
|
sylib |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐴 = 0ℋ ) |
| 12 |
2 1
|
chub2i |
⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 13 |
|
sseq2 |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ 𝐵 ⊆ 0ℋ ) ) |
| 14 |
12 13
|
mpbii |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐵 ⊆ 0ℋ ) |
| 15 |
2
|
chle0i |
⊢ ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → 𝐵 = 0ℋ ) |
| 17 |
11 16
|
jca |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ → ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ) |
| 18 |
6 17
|
impbii |
⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 ∨ℋ 𝐵 ) = 0ℋ ) |