Description: Join with lattice zero in CH . (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
Assertion | chj0i | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
2 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
3 | 1 2 | chjvali | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) ) |
4 | 1 | ch0lei | ⊢ 0ℋ ⊆ 𝐴 |
5 | ssequn2 | ⊢ ( 0ℋ ⊆ 𝐴 ↔ ( 𝐴 ∪ 0ℋ ) = 𝐴 ) | |
6 | 4 5 | mpbi | ⊢ ( 𝐴 ∪ 0ℋ ) = 𝐴 |
7 | 6 | fveq2i | ⊢ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) = ( ⊥ ‘ 𝐴 ) |
8 | 7 | fveq2i | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
9 | 1 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
10 | 3 8 9 | 3eqtri | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 |