Metamath Proof Explorer


Theorem chj0i

Description: Join with lattice zero in CH . (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis ch0le.1 𝐴C
Assertion chj0i ( 𝐴 0 ) = 𝐴

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 h0elch 0C
3 1 2 chjvali ( 𝐴 0 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0 ) ) )
4 1 ch0lei 0𝐴
5 ssequn2 ( 0𝐴 ↔ ( 𝐴 ∪ 0 ) = 𝐴 )
6 4 5 mpbi ( 𝐴 ∪ 0 ) = 𝐴
7 6 fveq2i ( ⊥ ‘ ( 𝐴 ∪ 0 ) ) = ( ⊥ ‘ 𝐴 )
8 7 fveq2i ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )
9 1 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
10 3 8 9 3eqtri ( 𝐴 0 ) = 𝐴