Description: Join with lattice zero in CH . (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| Assertion | chj0i | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 3 | 1 2 | chjvali | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) ) |
| 4 | 1 | ch0lei | ⊢ 0ℋ ⊆ 𝐴 |
| 5 | ssequn2 | ⊢ ( 0ℋ ⊆ 𝐴 ↔ ( 𝐴 ∪ 0ℋ ) = 𝐴 ) | |
| 6 | 4 5 | mpbi | ⊢ ( 𝐴 ∪ 0ℋ ) = 𝐴 |
| 7 | 6 | fveq2i | ⊢ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) = ( ⊥ ‘ 𝐴 ) |
| 8 | 7 | fveq2i | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 0ℋ ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 9 | 1 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
| 10 | 3 8 9 | 3eqtri | ⊢ ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 |