Metamath Proof Explorer


Theorem chj12

Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chj12 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 ( 𝐵 𝐶 ) ) = ( 𝐵 ( 𝐴 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 chjcom ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )
2 1 3adant3 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )
3 2 oveq1d ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐴 𝐵 ) ∨ 𝐶 ) = ( ( 𝐵 𝐴 ) ∨ 𝐶 ) )
4 chjass ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐴 𝐵 ) ∨ 𝐶 ) = ( 𝐴 ( 𝐵 𝐶 ) ) )
5 chjass ( ( 𝐵C𝐴C𝐶C ) → ( ( 𝐵 𝐴 ) ∨ 𝐶 ) = ( 𝐵 ( 𝐴 𝐶 ) ) )
6 5 3com12 ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐵 𝐴 ) ∨ 𝐶 ) = ( 𝐵 ( 𝐴 𝐶 ) ) )
7 3 4 6 3eqtr3d ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 ( 𝐵 𝐶 ) ) = ( 𝐵 ( 𝐴 𝐶 ) ) )