Metamath Proof Explorer


Theorem chj4i

Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chj12.1 𝐴C
chj12.2 𝐵C
chj12.3 𝐶C
chj4.4 𝐷C
Assertion chj4i ( ( 𝐴 𝐵 ) ∨ ( 𝐶 𝐷 ) ) = ( ( 𝐴 𝐶 ) ∨ ( 𝐵 𝐷 ) )

Proof

Step Hyp Ref Expression
1 chj12.1 𝐴C
2 chj12.2 𝐵C
3 chj12.3 𝐶C
4 chj4.4 𝐷C
5 2 3 4 chj12i ( 𝐵 ( 𝐶 𝐷 ) ) = ( 𝐶 ( 𝐵 𝐷 ) )
6 5 oveq2i ( 𝐴 ( 𝐵 ( 𝐶 𝐷 ) ) ) = ( 𝐴 ( 𝐶 ( 𝐵 𝐷 ) ) )
7 3 4 chjcli ( 𝐶 𝐷 ) ∈ C
8 1 2 7 chjassi ( ( 𝐴 𝐵 ) ∨ ( 𝐶 𝐷 ) ) = ( 𝐴 ( 𝐵 ( 𝐶 𝐷 ) ) )
9 2 4 chjcli ( 𝐵 𝐷 ) ∈ C
10 1 3 9 chjassi ( ( 𝐴 𝐶 ) ∨ ( 𝐵 𝐷 ) ) = ( 𝐴 ( 𝐶 ( 𝐵 𝐷 ) ) )
11 6 8 10 3eqtr4i ( ( 𝐴 𝐵 ) ∨ ( 𝐶 𝐷 ) ) = ( ( 𝐴 𝐶 ) ∨ ( 𝐵 𝐷 ) )