Step |
Hyp |
Ref |
Expression |
1 |
|
chj12.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chj12.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
chj12.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
chj4.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
2 3 4
|
chj12i |
⊢ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) |
6 |
5
|
oveq2i |
⊢ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
7 |
3 4
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ |
8 |
1 2 7
|
chjassi |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) |
9 |
2 4
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ |
10 |
1 3 9
|
chjassi |
⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
11 |
6 8 10
|
3eqtr4i |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) |