Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
chjass.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
inass |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
5 |
1 2
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
6 |
5
|
ineq1i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) |
7 |
2 3
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) |
8 |
7
|
ineq2i |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
9 |
4 6 8
|
3eqtr4i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
10 |
9
|
fveq2i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
11 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
12 |
11 3
|
chdmm4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) |
13 |
2 3
|
chjcli |
⊢ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ |
14 |
1 13
|
chdmm4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |
15 |
10 12 14
|
3eqtr3i |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |