Metamath Proof Explorer


Theorem chjassi

Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
chjass.3 𝐶C
Assertion chjassi ( ( 𝐴 𝐵 ) ∨ 𝐶 ) = ( 𝐴 ( 𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 chjass.3 𝐶C
4 inass ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) )
5 1 2 chdmj1i ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) )
6 5 ineq1i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) )
7 2 3 chdmj1i ( ⊥ ‘ ( 𝐵 𝐶 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) )
8 7 ineq2i ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 𝐶 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐶 ) ) )
9 4 6 8 3eqtr4i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 𝐶 ) ) )
10 9 fveq2i ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 𝐶 ) ) ) )
11 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
12 11 3 chdmm4i ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∩ ( ⊥ ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐵 ) ∨ 𝐶 )
13 2 3 chjcli ( 𝐵 𝐶 ) ∈ C
14 1 13 chdmm4i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( 𝐵 𝐶 ) ) ) ) = ( 𝐴 ( 𝐵 𝐶 ) )
15 10 12 14 3eqtr3i ( ( 𝐴 𝐵 ) ∨ 𝐶 ) = ( 𝐴 ( 𝐵 𝐶 ) )