| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atom1d | 
							⊢ ( 𝐵  ∈  HAtoms  ↔  ∃ 𝑥  ∈   ℋ ( 𝑥  ≠  0ℎ  ∧  𝐵  =  ( span ‘ { 𝑥 } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							spansnj | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   ℋ )  →  ( 𝐴  +ℋ  ( span ‘ { 𝑥 } ) )  =  ( 𝐴  ∨ℋ  ( span ‘ { 𝑥 } ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  ( span ‘ { 𝑥 } )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  +ℋ  ( span ‘ { 𝑥 } ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  ( span ‘ { 𝑥 } )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  ( span ‘ { 𝑥 } ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeq12d | 
							⊢ ( 𝐵  =  ( span ‘ { 𝑥 } )  →  ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ↔  ( 𝐴  +ℋ  ( span ‘ { 𝑥 } ) )  =  ( 𝐴  ∨ℋ  ( span ‘ { 𝑥 } ) ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							imbitrrid | 
							⊢ ( 𝐵  =  ( span ‘ { 𝑥 } )  →  ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   ℋ )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							expd | 
							⊢ ( 𝐵  =  ( span ‘ { 𝑥 } )  →  ( 𝐴  ∈   Cℋ   →  ( 𝑥  ∈   ℋ  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝑥  ≠  0ℎ  ∧  𝐵  =  ( span ‘ { 𝑥 } ) )  →  ( 𝐴  ∈   Cℋ   →  ( 𝑥  ∈   ℋ  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							com3l | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝑥  ∈   ℋ  →  ( ( 𝑥  ≠  0ℎ  ∧  𝐵  =  ( span ‘ { 𝑥 } ) )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexlimdv | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( ∃ 𝑥  ∈   ℋ ( 𝑥  ≠  0ℎ  ∧  𝐵  =  ( span ‘ { 𝑥 } ) )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							biimtrid | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐵  ∈  HAtoms  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imp | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈  HAtoms )  →  ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 ) )  |