Metamath Proof Explorer


Theorem chjcl

Description: Closure of join in CH . (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion chjcl ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) ∈ C )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 shjcl ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) ∈ C )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) ∈ C )