Metamath Proof Explorer


Theorem chjcli

Description: Closure of CH join. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chjcli ( 𝐴 𝐵 ) ∈ C

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chshii 𝐴S
4 2 chshii 𝐵S
5 3 4 shjcli ( 𝐴 𝐵 ) ∈ C