Metamath Proof Explorer


Theorem chjcom

Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chjcom ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 shjcom ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )