Metamath Proof Explorer


Theorem chjcomi

Description: Commutative law for join in CH . (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chjcomi ( 𝐴 𝐵 ) = ( 𝐵 𝐴 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chshii 𝐴S
4 2 chshii 𝐵S
5 3 4 shjcomi ( 𝐴 𝐵 ) = ( 𝐵 𝐴 )