Description: Idempotent law for Hilbert lattice join. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjidm | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐴 ) ) = ( 𝐴 ∨ℋ 𝐴 ) |
| 3 | chabs1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐴 ) ) = 𝐴 ) | |
| 4 | 3 | anidms | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐴 ) ) = 𝐴 ) |
| 5 | 2 4 | eqtr3id | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∨ℋ 𝐴 ) = 𝐴 ) |