Metamath Proof Explorer


Theorem chjidmi

Description: Idempotent law for Hilbert lattice join. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis chjidm.1 𝐴C
Assertion chjidmi ( 𝐴 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 chjidm.1 𝐴C
2 chjidm ( 𝐴C → ( 𝐴 𝐴 ) = 𝐴 )
3 1 2 ax-mp ( 𝐴 𝐴 ) = 𝐴