| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  →  𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  →  ( ⊥ ‘ 𝐴 )  =  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							oveq12d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  →  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) )  =  ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  ∨ℋ  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  →  ( ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) )  =   ℋ  ↔  ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  ∨ℋ  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ ) ) )  =   ℋ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ifchhv | 
							⊢ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  ∈   Cℋ   | 
						
						
							| 6 | 
							
								5
							 | 
							chjoi | 
							⊢ ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ )  ∨ℋ  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,   ℋ ) ) )  =   ℋ  | 
						
						
							| 7 | 
							
								4 6
							 | 
							dedth | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) )  =   ℋ )  |