Metamath Proof Explorer


Theorem chjval

Description: Value of join in CH . (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion chjval ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 shjval ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )