Metamath Proof Explorer
		
		
		
		Description:  Value of join in CH .  (Contributed by NM, 9-Aug-2000)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | chjval | ⊢  ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chsh | ⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ∈   Sℋ  ) | 
						
							| 2 |  | chsh | ⊢ ( 𝐵  ∈   Cℋ   →  𝐵  ∈   Sℋ  ) | 
						
							| 3 |  | shjval | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) |