Metamath Proof Explorer
Description: Value of join in CH . (Contributed by NM, 9-Aug-2000)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
chjval.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
chjval.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
chjvali |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
chjval.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjval.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
chjval |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |