Metamath Proof Explorer


Theorem chjvali

Description: Value of join in CH . (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses chjval.1 𝐴C
chjval.2 𝐵C
Assertion chjvali ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 chjval.1 𝐴C
2 chjval.2 𝐵C
3 chjval ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
4 1 2 3 mp2an ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) )