| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslsschl.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | chlcsschl.s | ⊢ 𝑆  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | hlbn | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  Ban ) | 
						
							| 4 |  | hlcph | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  ℂPreHil ) | 
						
							| 5 | 3 4 | jca | ⊢ ( 𝑊  ∈  ℂHil  →  ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil ) ) | 
						
							| 6 | 1 2 | bncssbn | ⊢ ( ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  Ban ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  Ban ) | 
						
							| 8 |  | hlphl | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  PreHil ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 | 2 9 | csslss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 11 | 8 10 | sylan | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 12 | 1 9 | cphsscph | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  ( LSubSp ‘ 𝑊 ) )  →  𝑋  ∈  ℂPreHil ) | 
						
							| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  ℂPreHil ) | 
						
							| 14 |  | ishl | ⊢ ( 𝑋  ∈  ℂHil  ↔  ( 𝑋  ∈  Ban  ∧  𝑋  ∈  ℂPreHil ) ) | 
						
							| 15 | 7 13 14 | sylanbrc | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  ℂHil ) |