Step |
Hyp |
Ref |
Expression |
1 |
|
cmslsschl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
chlcsschl.s |
⊢ 𝑆 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
hlbn |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) |
4 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
5 |
3 4
|
jca |
⊢ ( 𝑊 ∈ ℂHil → ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) |
6 |
1 2
|
bncssbn |
⊢ ( ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Ban ) |
8 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
2 9
|
csslss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
12 |
1 9
|
cphsscph |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑋 ∈ ℂPreHil ) |
13 |
4 11 12
|
syl2an2r |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) |
14 |
|
ishl |
⊢ ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) ) |
15 |
7 13 14
|
sylanbrc |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂHil ) |