Metamath Proof Explorer


Theorem chlej1

Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlej1 ( ( ( 𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 chsh ( 𝐶C𝐶S )
4 shlej1 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )
5 1 2 3 4 syl3anl ( ( ( 𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )