Metamath Proof Explorer
		
		
		
		Description:  Add join to both sides of Hilbert lattice ordering.  (Contributed by NM, 22-Jun-2004)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | chlej1 | ⊢  ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chsh | ⊢ ( 𝐴  ∈   Cℋ   →  𝐴  ∈   Sℋ  ) | 
						
							| 2 |  | chsh | ⊢ ( 𝐵  ∈   Cℋ   →  𝐵  ∈   Sℋ  ) | 
						
							| 3 |  | chsh | ⊢ ( 𝐶  ∈   Cℋ   →  𝐶  ∈   Sℋ  ) | 
						
							| 4 |  | shlej1 | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Sℋ  )  ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐶 ) ) | 
						
							| 5 | 1 2 3 4 | syl3anl | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐶 ) ) |