Metamath Proof Explorer
Description: Add join to both sides of a Hilbert lattice ordering.
(Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
|
|
chlub.1 |
⊢ 𝐶 ∈ Cℋ |
|
|
chlej12.4 |
⊢ 𝐷 ∈ Cℋ |
|
Assertion |
chlej12i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
chlub.1 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
chlej12.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
1 2 3
|
chlej1i |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
6 |
3 4 2
|
chlej2i |
⊢ ( 𝐶 ⊆ 𝐷 → ( 𝐵 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |
7 |
5 6
|
sylan9ss |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐷 ) ) |