Metamath Proof Explorer
		
		
		
		Description:  Add join to both sides of a Hilbert lattice ordering.
             (Contributed by NM, 19-Oct-1999)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ch0le.1 | 
						⊢ 𝐴  ∈   Cℋ   | 
					
					
						 | 
						 | 
						chjcl.2 | 
						⊢ 𝐵  ∈   Cℋ   | 
					
					
						 | 
						 | 
						chlub.1 | 
						⊢ 𝐶  ∈   Cℋ   | 
					
					
						 | 
						 | 
						chlej12.4 | 
						⊢ 𝐷  ∈   Cℋ   | 
					
				
					 | 
					Assertion | 
					chlej12i | 
					⊢  ( ( 𝐴  ⊆  𝐵  ∧  𝐶  ⊆  𝐷 )  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐷 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								
							 | 
							chlub.1 | 
							⊢ 𝐶  ∈   Cℋ   | 
						
						
							| 4 | 
							
								
							 | 
							chlej12.4 | 
							⊢ 𝐷  ∈   Cℋ   | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							chlej1i | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐶 ) )  | 
						
						
							| 6 | 
							
								3 4 2
							 | 
							chlej2i | 
							⊢ ( 𝐶  ⊆  𝐷  →  ( 𝐵  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐷 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan9ss | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐶  ⊆  𝐷 )  →  ( 𝐴  ∨ℋ  𝐶 )  ⊆  ( 𝐵  ∨ℋ  𝐷 ) )  |