Metamath Proof Explorer


Theorem chlej12i

Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
chlub.1 𝐶C
chlej12.4 𝐷C
Assertion chlej12i ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 chlub.1 𝐶C
4 chlej12.4 𝐷C
5 1 2 3 chlej1i ( 𝐴𝐵 → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )
6 3 4 2 chlej2i ( 𝐶𝐷 → ( 𝐵 𝐶 ) ⊆ ( 𝐵 𝐷 ) )
7 5 6 sylan9ss ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐷 ) )