Metamath Proof Explorer


Theorem chlej2

Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlej2 ( ( ( 𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵 ) → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 chsh ( 𝐶C𝐶S )
4 shlej2 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )
5 1 2 3 4 syl3anl ( ( ( 𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵 ) → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )