Metamath Proof Explorer
Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
chlej2 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
chsh |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) |
2 |
|
chsh |
⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) |
3 |
|
chsh |
⊢ ( 𝐶 ∈ Cℋ → 𝐶 ∈ Sℋ ) |
4 |
|
shlej2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
5 |
1 2 3 4
|
syl3anl |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |