Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
4 |
1 2 2
|
chlubii |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) |
6 |
2 1
|
chub2i |
⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
7 |
5 6
|
jctir |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
8 |
|
eqss |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
9 |
7 8
|
sylibr |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |
10 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
11 |
|
eqimss |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐵 ) |
12 |
10 11
|
sstrid |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 → 𝐴 ⊆ 𝐵 ) |
13 |
9 12
|
impbii |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) |