Metamath Proof Explorer


Theorem chlejb1i

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chlejb1i ( 𝐴𝐵 ↔ ( 𝐴 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 ssid 𝐵𝐵
4 1 2 2 chlubii ( ( 𝐴𝐵𝐵𝐵 ) → ( 𝐴 𝐵 ) ⊆ 𝐵 )
5 3 4 mpan2 ( 𝐴𝐵 → ( 𝐴 𝐵 ) ⊆ 𝐵 )
6 2 1 chub2i 𝐵 ⊆ ( 𝐴 𝐵 )
7 5 6 jctir ( 𝐴𝐵 → ( ( 𝐴 𝐵 ) ⊆ 𝐵𝐵 ⊆ ( 𝐴 𝐵 ) ) )
8 eqss ( ( 𝐴 𝐵 ) = 𝐵 ↔ ( ( 𝐴 𝐵 ) ⊆ 𝐵𝐵 ⊆ ( 𝐴 𝐵 ) ) )
9 7 8 sylibr ( 𝐴𝐵 → ( 𝐴 𝐵 ) = 𝐵 )
10 1 2 chub1i 𝐴 ⊆ ( 𝐴 𝐵 )
11 eqimss ( ( 𝐴 𝐵 ) = 𝐵 → ( 𝐴 𝐵 ) ⊆ 𝐵 )
12 10 11 sstrid ( ( 𝐴 𝐵 ) = 𝐵𝐴𝐵 )
13 9 12 impbii ( 𝐴𝐵 ↔ ( 𝐴 𝐵 ) = 𝐵 )