Metamath Proof Explorer


Theorem chlejb2

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb2 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( 𝐵 𝐴 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 chlejb1 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( 𝐴 𝐵 ) = 𝐵 ) )
2 chjcom ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )
3 2 eqeq1d ( ( 𝐴C𝐵C ) → ( ( 𝐴 𝐵 ) = 𝐵 ↔ ( 𝐵 𝐴 ) = 𝐵 ) )
4 1 3 bitrd ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( 𝐵 𝐴 ) = 𝐵 ) )