Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chlejb2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∨ℋ 𝐴 ) = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chlejb1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ) ) | |
2 | chjcom | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) | |
3 | 2 | eqeq1d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) = 𝐵 ↔ ( 𝐵 ∨ℋ 𝐴 ) = 𝐵 ) ) |
4 | 1 3 | bitrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∨ℋ 𝐴 ) = 𝐵 ) ) |