Metamath Proof Explorer


Theorem chlimi

Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypothesis chlim.1 𝐴 ∈ V
Assertion chlimi ( ( 𝐻C𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 )

Proof

Step Hyp Ref Expression
1 chlim.1 𝐴 ∈ V
2 isch2 ( 𝐻C ↔ ( 𝐻S ∧ ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) ) )
3 2 simprbi ( 𝐻C → ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) )
4 nnex ℕ ∈ V
5 fex ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ ℕ ∈ V ) → 𝐹 ∈ V )
6 4 5 mpan2 ( 𝐹 : ℕ ⟶ 𝐻𝐹 ∈ V )
7 6 adantr ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐹 ∈ V )
8 feq1 ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻𝐹 : ℕ ⟶ 𝐻 ) )
9 breq1 ( 𝑓 = 𝐹 → ( 𝑓𝑣 𝑥𝐹𝑣 𝑥 ) )
10 8 9 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) ) )
11 10 imbi1d ( 𝑓 = 𝐹 → ( ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) → 𝑥𝐻 ) ) )
12 11 albidv ( 𝑓 = 𝐹 → ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) ↔ ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) → 𝑥𝐻 ) ) )
13 12 spcgv ( 𝐹 ∈ V → ( ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) → ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) → 𝑥𝐻 ) ) )
14 breq2 ( 𝑥 = 𝐴 → ( 𝐹𝑣 𝑥𝐹𝑣 𝐴 ) )
15 14 anbi2d ( 𝑥 = 𝐴 → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) ) )
16 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐻𝐴𝐻 ) )
17 15 16 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) → 𝑥𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) ) )
18 1 17 spcv ( ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝑥 ) → 𝑥𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) )
19 13 18 syl6 ( 𝐹 ∈ V → ( ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) ) )
20 7 19 syl ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → ( ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) ) )
21 20 pm2.43b ( ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻𝑓𝑣 𝑥 ) → 𝑥𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) )
22 3 21 syl ( 𝐻C → ( ( 𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 ) )
23 22 3impib ( ( 𝐻C𝐹 : ℕ ⟶ 𝐻𝐹𝑣 𝐴 ) → 𝐴𝐻 )