Step |
Hyp |
Ref |
Expression |
1 |
|
chlim.1 |
⊢ 𝐴 ∈ V |
2 |
|
isch2 |
⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐻 ∈ Cℋ → ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
4 |
|
nnex |
⊢ ℕ ∈ V |
5 |
|
fex |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ ℕ ∈ V ) → 𝐹 ∈ V ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐹 : ℕ ⟶ 𝐻 → 𝐹 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐹 ∈ V ) |
8 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻 ↔ 𝐹 : ℕ ⟶ 𝐻 ) ) |
9 |
|
breq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) ) ) |
11 |
10
|
imbi1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
13 |
12
|
spcgv |
⊢ ( 𝐹 ∈ V → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) ) ) |
16 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻 ) ) |
17 |
15 16
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
18 |
1 17
|
spcv |
⊢ ( ∀ 𝑥 ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
19 |
13 18
|
syl6 |
⊢ ( 𝐹 ∈ V → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
20 |
7 19
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) ) |
21 |
20
|
pm2.43b |
⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
22 |
3 21
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( ( 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) ) |
23 |
22
|
3impib |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 : ℕ ⟶ 𝐻 ∧ 𝐹 ⇝𝑣 𝐴 ) → 𝐴 ∈ 𝐻 ) |