Description: Hilbert lattice join is the least upper bound of two elements. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlub | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 3 | shlub | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) | |
| 4 | 2 3 | syl3an2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) | 
| 5 | 1 4 | syl3an1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |