Metamath Proof Explorer


Theorem chlub

Description: Hilbert lattice join is the least upper bound of two elements. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlub ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐴C𝐴S )
2 chsh ( 𝐵C𝐵S )
3 shlub ( ( 𝐴S𝐵S𝐶C ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 ) )
4 2 3 syl3an2 ( ( 𝐴S𝐵C𝐶C ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 ) )
5 1 4 syl3an1 ( ( 𝐴C𝐵C𝐶C ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 ) )