Metamath Proof Explorer
Description: Hilbert lattice join is the least upper bound of two elements.
(Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
|
|
chlub.1 |
⊢ 𝐶 ∈ Cℋ |
|
Assertion |
chlubi |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
chlub.1 |
⊢ 𝐶 ∈ Cℋ |
4 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
5 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
6 |
4 5 3
|
shlubi |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) |