Description: Meet with Hilbert lattice zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chm0 | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ 0ℋ ) = 0ℋ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ 0ℋ ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 0ℋ ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∩ 0ℋ ) = 0ℋ ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 0ℋ ) = 0ℋ ) ) | 
| 3 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 4 | 3 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ | 
| 5 | 4 | chm0i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 0ℋ ) = 0ℋ | 
| 6 | 2 5 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ 0ℋ ) = 0ℋ ) |