Metamath Proof Explorer


Theorem chm0

Description: Meet with Hilbert lattice zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chm0 ( 𝐴C → ( 𝐴 ∩ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 ineq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ∩ 0 ) = ( if ( 𝐴C , 𝐴 , 0 ) ∩ 0 ) )
2 1 eqeq1d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 ∩ 0 ) = 0 ↔ ( if ( 𝐴C , 𝐴 , 0 ) ∩ 0 ) = 0 ) )
3 h0elch 0C
4 3 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
5 4 chm0i ( if ( 𝐴C , 𝐴 , 0 ) ∩ 0 ) = 0
6 2 5 dedth ( 𝐴C → ( 𝐴 ∩ 0 ) = 0 )