Metamath Proof Explorer


Theorem chm0i

Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypothesis ch0le.1 𝐴C
Assertion chm0i ( 𝐴 ∩ 0 ) = 0

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 inss2 ( 𝐴 ∩ 0 ) ⊆ 0
3 1 ch0lei 0𝐴
4 ssid 0 ⊆ 0
5 3 4 ssini 0 ⊆ ( 𝐴 ∩ 0 )
6 2 5 eqssi ( 𝐴 ∩ 0 ) = 0