Metamath Proof Explorer


Theorem chne0

Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion chne0 ( 𝐴C → ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 neeq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ≠ 0 ↔ if ( 𝐴C , 𝐴 , 0 ) ≠ 0 ) )
2 rexeq ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ∃ 𝑥𝐴 𝑥 ≠ 0 ↔ ∃ 𝑥 ∈ if ( 𝐴C , 𝐴 , 0 ) 𝑥 ≠ 0 ) )
3 1 2 bibi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ≠ 0 ↔ ∃ 𝑥 ∈ if ( 𝐴C , 𝐴 , 0 ) 𝑥 ≠ 0 ) ) )
4 h0elch 0C
5 4 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
6 5 chne0i ( if ( 𝐴C , 𝐴 , 0 ) ≠ 0 ↔ ∃ 𝑥 ∈ if ( 𝐴C , 𝐴 , 0 ) 𝑥 ≠ 0 )
7 3 6 dedth ( 𝐴C → ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 ) )