Metamath Proof Explorer


Theorem chnlei

Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chnlei ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 2 chub1i 𝐴 ⊆ ( 𝐴 𝐵 )
4 3 biantrur ( ¬ 𝐴 = ( 𝐴 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 𝐵 ) ) )
5 2 1 chlejb1i ( 𝐵𝐴 ↔ ( 𝐵 𝐴 ) = 𝐴 )
6 eqcom ( ( 𝐵 𝐴 ) = 𝐴𝐴 = ( 𝐵 𝐴 ) )
7 2 1 chjcomi ( 𝐵 𝐴 ) = ( 𝐴 𝐵 )
8 7 eqeq2i ( 𝐴 = ( 𝐵 𝐴 ) ↔ 𝐴 = ( 𝐴 𝐵 ) )
9 5 6 8 3bitri ( 𝐵𝐴𝐴 = ( 𝐴 𝐵 ) )
10 9 notbii ( ¬ 𝐵𝐴 ↔ ¬ 𝐴 = ( 𝐴 𝐵 ) )
11 dfpss2 ( 𝐴 ⊊ ( 𝐴 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 𝐵 ) ) )
12 4 10 11 3bitr4i ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) )