Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
4 |
3
|
biantrur |
⊢ ( ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) ) |
5 |
2 1
|
chlejb1i |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∨ℋ 𝐴 ) = 𝐴 ) |
6 |
|
eqcom |
⊢ ( ( 𝐵 ∨ℋ 𝐴 ) = 𝐴 ↔ 𝐴 = ( 𝐵 ∨ℋ 𝐴 ) ) |
7 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
8 |
7
|
eqeq2i |
⊢ ( 𝐴 = ( 𝐵 ∨ℋ 𝐴 ) ↔ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
9 |
5 6 8
|
3bitri |
⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
10 |
9
|
notbii |
⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
11 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) ) |
12 |
4 10 11
|
3bitr4i |
⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) |