| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1 2
							 | 
							chub1i | 
							⊢ 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  | 
						
						
							| 4 | 
							
								3
							 | 
							biantrur | 
							⊢ ( ¬  𝐴  =  ( 𝐴  ∨ℋ  𝐵 )  ↔  ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ¬  𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								2 1
							 | 
							chlejb1i | 
							⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∨ℋ  𝐴 )  =  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐵  ∨ℋ  𝐴 )  =  𝐴  ↔  𝐴  =  ( 𝐵  ∨ℋ  𝐴 ) )  | 
						
						
							| 7 | 
							
								2 1
							 | 
							chjcomi | 
							⊢ ( 𝐵  ∨ℋ  𝐴 )  =  ( 𝐴  ∨ℋ  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq2i | 
							⊢ ( 𝐴  =  ( 𝐵  ∨ℋ  𝐴 )  ↔  𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							3bitri | 
							⊢ ( 𝐵  ⊆  𝐴  ↔  𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							notbii | 
							⊢ ( ¬  𝐵  ⊆  𝐴  ↔  ¬  𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfpss2 | 
							⊢ ( 𝐴  ⊊  ( 𝐴  ∨ℋ  𝐵 )  ↔  ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ¬  𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								4 10 11
							 | 
							3bitr4i | 
							⊢ ( ¬  𝐵  ⊆  𝐴  ↔  𝐴  ⊊  ( 𝐴  ∨ℋ  𝐵 ) )  |