Step |
Hyp |
Ref |
Expression |
1 |
|
h0elsh |
⊢ 0ℋ ∈ Sℋ |
2 |
|
shocel |
⊢ ( 0ℋ ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
4 |
|
hi02 |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0ℎ ) = 0 ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
6 |
|
elch0 |
⊢ ( 𝑦 ∈ 0ℋ ↔ 𝑦 = 0ℎ ) |
7 |
6
|
imbi1i |
⊢ ( ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ∀ 𝑦 ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
9 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
10 |
9
|
elexi |
⊢ 0ℎ ∈ V |
11 |
|
oveq2 |
⊢ ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih 0ℎ ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑦 = 0ℎ → ( ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) ) |
13 |
10 12
|
ceqsalv |
⊢ ( ∀ 𝑦 ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
14 |
8 13
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
15 |
5 14
|
bitri |
⊢ ( ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
16 |
4 15
|
sylibr |
⊢ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) |
17 |
|
abai |
⊢ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) |
18 |
16 17
|
mpbiran2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ 𝑥 ∈ ℋ ) |
19 |
3 18
|
bitri |
⊢ ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ 𝑥 ∈ ℋ ) |
20 |
19
|
eqriv |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |