| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							helsh | 
							⊢  ℋ  ∈   Sℋ   | 
						
						
							| 2 | 
							
								
							 | 
							shocel | 
							⊢ (  ℋ  ∈   Sℋ   →  ( 𝑥  ∈  ( ⊥ ‘  ℋ )  ↔  ( 𝑥  ∈   ℋ  ∧  ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  0 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  ↔  ( 𝑥  ∈   ℋ  ∧  ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simprbi | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  →  ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  0 )  | 
						
						
							| 5 | 
							
								
							 | 
							shocss | 
							⊢ (  ℋ  ∈   Sℋ   →  ( ⊥ ‘  ℋ )  ⊆   ℋ )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ax-mp | 
							⊢ ( ⊥ ‘  ℋ )  ⊆   ℋ  | 
						
						
							| 7 | 
							
								6
							 | 
							sseli | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  →  𝑥  ∈   ℋ )  | 
						
						
							| 8 | 
							
								
							 | 
							hial0 | 
							⊢ ( 𝑥  ∈   ℋ  →  ( ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  0  ↔  𝑥  =  0ℎ ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  𝑦 )  =  0  ↔  𝑥  =  0ℎ ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							mpbid | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  →  𝑥  =  0ℎ )  | 
						
						
							| 11 | 
							
								
							 | 
							elch0 | 
							⊢ ( 𝑥  ∈  0ℋ  ↔  𝑥  =  0ℎ )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							⊢ ( 𝑥  ∈  ( ⊥ ‘  ℋ )  →  𝑥  ∈  0ℋ )  | 
						
						
							| 13 | 
							
								12
							 | 
							ssriv | 
							⊢ ( ⊥ ‘  ℋ )  ⊆  0ℋ  | 
						
						
							| 14 | 
							
								
							 | 
							h0elsh | 
							⊢ 0ℋ  ∈   Sℋ   | 
						
						
							| 15 | 
							
								
							 | 
							shococss | 
							⊢ ( 0ℋ  ∈   Sℋ   →  0ℋ  ⊆  ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							⊢ 0ℋ  ⊆  ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) )  | 
						
						
							| 17 | 
							
								
							 | 
							choc0 | 
							⊢ ( ⊥ ‘ 0ℋ )  =   ℋ  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq2i | 
							⊢ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) )  =  ( ⊥ ‘  ℋ )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							sseqtri | 
							⊢ 0ℋ  ⊆  ( ⊥ ‘  ℋ )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							eqssi | 
							⊢ ( ⊥ ‘  ℋ )  =  0ℋ  |