| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  →  𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  →  ( ⊥ ‘ 𝐴 )  =  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ineq12d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  →  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  =  ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  ∩  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  →  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ  ↔  ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  ∩  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ ) ) )  =  0ℋ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							h0elch | 
							⊢ 0ℋ  ∈   Cℋ   | 
						
						
							| 6 | 
							
								5
							 | 
							elimel | 
							⊢ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  ∈   Cℋ   | 
						
						
							| 7 | 
							
								6
							 | 
							chocini | 
							⊢ ( if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ )  ∩  ( ⊥ ‘ if ( 𝐴  ∈   Cℋ  ,  𝐴 ,  0ℋ ) ) )  =  0ℋ  | 
						
						
							| 8 | 
							
								4 7
							 | 
							dedth | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ )  |