Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) |
2 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) |
3 |
1 2
|
ineq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ ) ) |
5 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
6 |
5
|
elimel |
⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
7 |
6
|
chocini |
⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) = 0ℋ |
8 |
4 7
|
dedth |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |