Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chocnul | ⊢ ( ⊥ ‘ ∅ ) = ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ( 𝑥 ·ih 𝑦 ) = 0 | |
| 2 | 0ss | ⊢ ∅ ⊆ ℋ | |
| 3 | ocel | ⊢ ( ∅ ⊆ ℋ → ( 𝑥 ∈ ( ⊥ ‘ ∅ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ∅ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ∅ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ∅ ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 5 | 1 4 | mpbiran2 | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ∅ ) ↔ 𝑥 ∈ ℋ ) |
| 6 | 5 | eqriv | ⊢ ( ⊥ ‘ ∅ ) = ℋ |