Metamath Proof Explorer


Theorem chocunii

Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of Beran p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999) (Proof shortened by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis chocuni.1 𝐻C
Assertion chocunii ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 chocuni.1 𝐻C
2 1 chshii 𝐻S
3 2 a1i ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → 𝐻S )
4 shocsh ( 𝐻S → ( ⊥ ‘ 𝐻 ) ∈ S )
5 2 4 mp1i ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → ( ⊥ ‘ 𝐻 ) ∈ S )
6 ocin ( 𝐻S → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0 )
7 2 6 mp1i ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0 )
8 simplll ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → 𝐴𝐻 )
9 simpllr ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) )
10 simplrl ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → 𝐶𝐻 )
11 simplrr ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → 𝐷 ∈ ( ⊥ ‘ 𝐻 ) )
12 eqtr2 ( ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
13 12 adantl ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
14 3 5 7 8 9 10 11 13 shuni ( ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) )
15 14 ex ( ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶𝐻𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝑅 = ( 𝐴 + 𝐵 ) ∧ 𝑅 = ( 𝐶 + 𝐷 ) ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )