| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chocuni.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 | 1 | chshii | ⊢ 𝐻  ∈   Sℋ | 
						
							| 3 | 2 | a1i | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  𝐻  ∈   Sℋ  ) | 
						
							| 4 |  | shocsh | ⊢ ( 𝐻  ∈   Sℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 5 | 2 4 | mp1i | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 6 |  | ocin | ⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 7 | 2 6 | mp1i | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 8 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  𝐴  ∈  𝐻 ) | 
						
							| 9 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  𝐵  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 10 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  𝐶  ∈  𝐻 ) | 
						
							| 11 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 12 |  | eqtr2 | ⊢ ( ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) )  →  ( 𝐴  +ℎ  𝐵 )  =  ( 𝐶  +ℎ  𝐷 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  ( 𝐴  +ℎ  𝐵 )  =  ( 𝐶  +ℎ  𝐷 ) ) | 
						
							| 14 | 3 5 7 8 9 10 11 13 | shuni | ⊢ ( ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  ∧  ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  ( 𝐶  ∈  𝐻  ∧  𝐷  ∈  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( 𝑅  =  ( 𝐴  +ℎ  𝐵 )  ∧  𝑅  =  ( 𝐶  +ℎ  𝐷 ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) |