Step |
Hyp |
Ref |
Expression |
1 |
|
chocuni.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
3 |
2
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐻 ∈ Sℋ ) |
4 |
|
shocsh |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
5 |
2 4
|
mp1i |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
6 |
|
ocin |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
7 |
2 6
|
mp1i |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
8 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐴 ∈ 𝐻 ) |
9 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) |
10 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐶 ∈ 𝐻 ) |
11 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) |
12 |
|
eqtr2 |
⊢ ( ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) |
14 |
3 5 7 8 9 10 11 13
|
shuni |
⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
15 |
14
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |