| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 7 |
|
chp0mat.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 8 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑁 ∈ Fin ) |
| 9 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 10 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 11 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 12 |
10 11
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 13 |
|
ringgrp |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ Grp ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 15 |
14 7
|
grpidcl |
⊢ ( 𝐴 ∈ Grp → 0 ∈ ( Base ‘ 𝐴 ) ) |
| 16 |
12 13 15
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 0 ∈ ( Base ‘ 𝐴 ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 18 |
3 17
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 19 |
7 18
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 20 |
10 19
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 0 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 0 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 22 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 23 |
|
simpl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 24 |
23
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
| 25 |
|
simpr |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
| 27 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 28 |
21 22 24 26 27
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 0 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 29 |
28
|
a1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 0 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
| 30 |
29
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 0 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
| 31 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 32 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 33 |
1 2 3 31 14 4 17 5 32
|
chpdmat |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 0 ∈ ( Base ‘ 𝐴 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 0 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝐶 ‘ 0 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) ) ) ) |
| 34 |
8 9 16 30 33
|
syl31anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 0 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) ) ) ) |
| 35 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 0 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 36 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) ∧ ( 𝑥 = 𝑘 ∧ 𝑦 = 𝑘 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 38 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 39 |
35 36 37 37 38
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 0 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) |
| 41 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 43 |
2 31 17 42
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 44 |
41 43
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 46 |
40 45
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) = ( 0g ‘ 𝑃 ) ) |
| 47 |
46
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) = ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) |
| 48 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 49 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
| 50 |
10 48 49
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Grp ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Grp ) |
| 52 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 53 |
4 2 52
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 54 |
41 53
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
51 54
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) |
| 57 |
52 42 32
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝑋 ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝑋 ) |
| 59 |
47 58
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) = 𝑋 ) |
| 60 |
59
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 0 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) ) |
| 62 |
2
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 63 |
5
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝐺 ∈ CMnd ) |
| 64 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 65 |
62 63 64
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐺 ∈ Mnd ) |
| 67 |
10 53
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 69 |
5 52
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 70 |
68 69
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 71 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 72 |
71 6
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝑁 ) ↑ 𝑋 ) ) |
| 73 |
66 8 70 72
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝑁 ) ↑ 𝑋 ) ) |
| 74 |
34 61 73
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 0 ) = ( ( ♯ ‘ 𝑁 ) ↑ 𝑋 ) ) |