| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							chpval | 
							⊢ ( 1  ∈  ℝ  →  ( ψ ‘ 1 )  =  Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ψ ‘ 1 )  =  Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							elfz1eq | 
							⊢ ( 𝑥  ∈  ( 1 ... 1 )  →  𝑥  =  1 )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							⊢ ( 𝑥  ∈  ( 1 ... 1 )  →  ( Λ ‘ 𝑥 )  =  ( Λ ‘ 1 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							vma1 | 
							⊢ ( Λ ‘ 1 )  =  0  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqtrdi | 
							⊢ ( 𝑥  ∈  ( 1 ... 1 )  →  ( Λ ‘ 𝑥 )  =  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 9 | 
							
								
							 | 
							flid | 
							⊢ ( 1  ∈  ℤ  →  ( ⌊ ‘ 1 )  =  1 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ( ⌊ ‘ 1 )  =  1  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2i | 
							⊢ ( 1 ... ( ⌊ ‘ 1 ) )  =  ( 1 ... 1 )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							eleq2s | 
							⊢ ( 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) )  →  ( Λ ‘ 𝑥 )  =  0 )  | 
						
						
							| 13 | 
							
								12
							 | 
							sumeq2i | 
							⊢ Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 )  =  Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) 0  | 
						
						
							| 14 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... ( ⌊ ‘ 1 ) )  ∈  Fin  | 
						
						
							| 15 | 
							
								14
							 | 
							olci | 
							⊢ ( ( 1 ... ( ⌊ ‘ 1 ) )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... ( ⌊ ‘ 1 ) )  ∈  Fin )  | 
						
						
							| 16 | 
							
								
							 | 
							sumz | 
							⊢ ( ( ( 1 ... ( ⌊ ‘ 1 ) )  ⊆  ( ℤ≥ ‘ 1 )  ∨  ( 1 ... ( ⌊ ‘ 1 ) )  ∈  Fin )  →  Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) 0  =  0 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							⊢ Σ 𝑥  ∈  ( 1 ... ( ⌊ ‘ 1 ) ) 0  =  0  | 
						
						
							| 18 | 
							
								3 13 17
							 | 
							3eqtri | 
							⊢ ( ψ ‘ 1 )  =  0  |