Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
chpval |
⊢ ( 1 ∈ ℝ → ( ψ ‘ 1 ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ψ ‘ 1 ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 ) |
4 |
|
elfz1eq |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → 𝑥 = 1 ) |
5 |
4
|
fveq2d |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → ( Λ ‘ 𝑥 ) = ( Λ ‘ 1 ) ) |
6 |
|
vma1 |
⊢ ( Λ ‘ 1 ) = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 ∈ ( 1 ... 1 ) → ( Λ ‘ 𝑥 ) = 0 ) |
8 |
|
1z |
⊢ 1 ∈ ℤ |
9 |
|
flid |
⊢ ( 1 ∈ ℤ → ( ⌊ ‘ 1 ) = 1 ) |
10 |
8 9
|
ax-mp |
⊢ ( ⌊ ‘ 1 ) = 1 |
11 |
10
|
oveq2i |
⊢ ( 1 ... ( ⌊ ‘ 1 ) ) = ( 1 ... 1 ) |
12 |
7 11
|
eleq2s |
⊢ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) → ( Λ ‘ 𝑥 ) = 0 ) |
13 |
12
|
sumeq2i |
⊢ Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) ( Λ ‘ 𝑥 ) = Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) 0 |
14 |
|
fzfi |
⊢ ( 1 ... ( ⌊ ‘ 1 ) ) ∈ Fin |
15 |
14
|
olci |
⊢ ( ( 1 ... ( ⌊ ‘ 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... ( ⌊ ‘ 1 ) ) ∈ Fin ) |
16 |
|
sumz |
⊢ ( ( ( 1 ... ( ⌊ ‘ 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... ( ⌊ ‘ 1 ) ) ∈ Fin ) → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) 0 = 0 ) |
17 |
15 16
|
ax-mp |
⊢ Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 1 ) ) 0 = 0 |
18 |
3 13 17
|
3eqtri |
⊢ ( ψ ‘ 1 ) = 0 |