Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
2 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 1 ∈ ℝ ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
|
elicopnf |
⊢ ( 2 ∈ ℝ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
8 |
|
0red |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 ∈ ℝ ) |
9 |
3
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ ) |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 2 ) |
12 |
5
|
simprbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑥 ) |
13 |
8 9 6 11 12
|
ltletrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 𝑥 ) |
14 |
6 13
|
elrpd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
15 |
14
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
16 |
15
|
rpge0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 0 ≤ 𝑥 ) |
17 |
7 16
|
resqrtcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
18 |
15
|
relogcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
19 |
17 18
|
remulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
20 |
12
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 2 ≤ 𝑥 ) |
21 |
|
chtrpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
22 |
7 20 21
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
23 |
19 22
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ∈ ℝ ) |
24 |
6
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ |
25 |
1
|
recnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
26 |
|
rlimconst |
⊢ ( ( ( 2 [,) +∞ ) ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ 1 ) ⇝𝑟 1 ) |
27 |
24 25 26
|
sylancr |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ 1 ) ⇝𝑟 1 ) |
28 |
|
ovexd |
⊢ ( ⊤ → ( 2 [,) +∞ ) ∈ V ) |
29 |
7 22
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 𝑥 / ( θ ‘ 𝑥 ) ) ∈ ℝ ) |
30 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ∈ V ) |
31 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ) |
32 |
7
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
33 |
|
cxpsqrt |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
35 |
34
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) = ( ( log ‘ 𝑥 ) / ( √ ‘ 𝑥 ) ) ) |
36 |
18
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
37 |
15
|
rpsqrtcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
38 |
37
|
rpcnne0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ) |
39 |
|
divcan5 |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ∧ ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( ( √ ‘ 𝑥 ) · ( √ ‘ 𝑥 ) ) ) = ( ( log ‘ 𝑥 ) / ( √ ‘ 𝑥 ) ) ) |
40 |
36 38 38 39
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( ( √ ‘ 𝑥 ) · ( √ ‘ 𝑥 ) ) ) = ( ( log ‘ 𝑥 ) / ( √ ‘ 𝑥 ) ) ) |
41 |
|
remsqsqrt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ( √ ‘ 𝑥 ) · ( √ ‘ 𝑥 ) ) = 𝑥 ) |
42 |
7 16 41
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( √ ‘ 𝑥 ) · ( √ ‘ 𝑥 ) ) = 𝑥 ) |
43 |
42
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( ( √ ‘ 𝑥 ) · ( √ ‘ 𝑥 ) ) ) = ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) |
44 |
35 40 43
|
3eqtr2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) = ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) |
45 |
44
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) ) |
46 |
28 29 30 31 45
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( θ ‘ 𝑥 ) ) · ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) ) ) |
47 |
15
|
rpne0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 𝑥 ≠ 0 ) |
48 |
22
|
rpcnne0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ) |
49 |
19
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
50 |
|
dmdcan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ∧ ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝑥 / ( θ ‘ 𝑥 ) ) · ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) = ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) |
51 |
32 47 48 49 50
|
syl211anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( 𝑥 / ( θ ‘ 𝑥 ) ) · ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) = ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) |
52 |
51
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( θ ‘ 𝑥 ) ) · ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
53 |
46 52
|
eqtrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
54 |
|
chto1lb |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
55 |
14
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ+ |
56 |
55
|
a1i |
⊢ ( ⊤ → ( 2 [,) +∞ ) ⊆ ℝ+ ) |
57 |
|
1rp |
⊢ 1 ∈ ℝ+ |
58 |
|
rphalfcl |
⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
59 |
57 58
|
ax-mp |
⊢ ( 1 / 2 ) ∈ ℝ+ |
60 |
|
cxploglim |
⊢ ( ( 1 / 2 ) ∈ ℝ+ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 ) |
61 |
59 60
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 |
62 |
61
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 ) |
63 |
56 62
|
rlimres2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 ) |
64 |
|
o1rlimmul |
⊢ ( ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 ) → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ) ⇝𝑟 0 ) |
65 |
54 63 64
|
sylancr |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( log ‘ 𝑥 ) / ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) ) ⇝𝑟 0 ) |
66 |
53 65
|
eqbrtrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 0 ) |
67 |
2 23 27 66
|
rlimadd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) ⇝𝑟 ( 1 + 0 ) ) |
68 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
69 |
67 68
|
breqtrdi |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ) |
70 |
|
1re |
⊢ 1 ∈ ℝ |
71 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ∈ ℝ ) → ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ∈ ℝ ) |
72 |
70 23 71
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ∈ ℝ ) |
73 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
74 |
7 73
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
75 |
74 22
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ∈ ℝ ) |
76 |
|
chtcl |
⊢ ( 𝑥 ∈ ℝ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
77 |
7 76
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( θ ‘ 𝑥 ) ∈ ℝ ) |
78 |
77 19
|
readdcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
79 |
3
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 2 ∈ ℝ ) |
80 |
|
1le2 |
⊢ 1 ≤ 2 |
81 |
80
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 1 ≤ 2 ) |
82 |
2 79 7 81 20
|
letrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
83 |
|
chpub |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ≤ ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
84 |
7 82 83
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ψ ‘ 𝑥 ) ≤ ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
85 |
74 78 22 84
|
lediv1dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ≤ ( ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( θ ‘ 𝑥 ) ) ) |
86 |
22
|
rpcnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( θ ‘ 𝑥 ) ∈ ℂ ) |
87 |
|
divdir |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ∧ ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( θ ‘ 𝑥 ) ) = ( ( ( θ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
88 |
86 49 48 87
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( θ ‘ 𝑥 ) ) = ( ( ( θ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
89 |
|
divid |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) → ( ( θ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) = 1 ) |
90 |
48 89
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) = 1 ) |
91 |
90
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( θ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) = ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
92 |
88 91
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( θ ‘ 𝑥 ) + ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( θ ‘ 𝑥 ) ) = ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
93 |
85 92
|
breqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ≤ ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
94 |
93
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 2 [,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ≤ ( 1 + ( ( ( √ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
95 |
86
|
mulid2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 1 · ( θ ‘ 𝑥 ) ) = ( θ ‘ 𝑥 ) ) |
96 |
|
chtlepsi |
⊢ ( 𝑥 ∈ ℝ → ( θ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑥 ) ) |
97 |
7 96
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( θ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑥 ) ) |
98 |
95 97
|
eqbrtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 1 · ( θ ‘ 𝑥 ) ) ≤ ( ψ ‘ 𝑥 ) ) |
99 |
2 74 22
|
lemuldivd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( 1 · ( θ ‘ 𝑥 ) ) ≤ ( ψ ‘ 𝑥 ) ↔ 1 ≤ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) |
100 |
98 99
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 1 ≤ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) |
101 |
100
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 2 [,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → 1 ≤ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) |
102 |
1 1 69 72 75 94 101
|
rlimsqz2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 ) |
103 |
102
|
mptru |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 |