| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpdifbnd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
chpdifbnd.1 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
| 3 |
|
chpdifbnd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
|
chpdifbnd.2 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) ) ≤ 𝐵 ) |
| 5 |
|
chpdifbnd.c |
⊢ 𝐶 = ( ( 𝐵 · ( 𝐴 + 1 ) ) + ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 6 |
|
chpdifbnd.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 (,) +∞ ) ) |
| 7 |
|
chpdifbnd.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] ( 𝐴 · 𝑋 ) ) ) |
| 8 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
| 9 |
8 6
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 10 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 11 |
10 9
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℝ ) |
| 12 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝐴 · 𝑋 ) ∈ ℝ ) → ( 𝑌 ∈ ( 𝑋 [,] ( 𝐴 · 𝑋 ) ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ ( 𝐴 · 𝑋 ) ) ) ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 [,] ( 𝐴 · 𝑋 ) ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ ( 𝐴 · 𝑋 ) ) ) ) |
| 14 |
7 13
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ ( 𝐴 · 𝑋 ) ) ) |
| 15 |
14
|
simp1d |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 16 |
|
chpcl |
⊢ ( 𝑌 ∈ ℝ → ( ψ ‘ 𝑌 ) ∈ ℝ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ψ ‘ 𝑌 ) ∈ ℝ ) |
| 18 |
|
chpcl |
⊢ ( 𝑋 ∈ ℝ → ( ψ ‘ 𝑋 ) ∈ ℝ ) |
| 19 |
9 18
|
syl |
⊢ ( 𝜑 → ( ψ ‘ 𝑋 ) ∈ ℝ ) |
| 20 |
17 19
|
resubcld |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) ∈ ℝ ) |
| 21 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 22 |
|
1re |
⊢ 1 ∈ ℝ |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 24 |
|
0lt1 |
⊢ 0 < 1 |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 26 |
|
eliooord |
⊢ ( 𝑋 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑋 ∧ 𝑋 < +∞ ) ) |
| 27 |
6 26
|
syl |
⊢ ( 𝜑 → ( 1 < 𝑋 ∧ 𝑋 < +∞ ) ) |
| 28 |
27
|
simpld |
⊢ ( 𝜑 → 1 < 𝑋 ) |
| 29 |
21 23 9 25 28
|
lttrd |
⊢ ( 𝜑 → 0 < 𝑋 ) |
| 30 |
9 29
|
elrpd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 31 |
30
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℝ ) |
| 32 |
20 31
|
remulcld |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 33 |
|
2re |
⊢ 2 ∈ ℝ |
| 34 |
15 9
|
resubcld |
⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 35 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑌 − 𝑋 ) ∈ ℝ ) → ( 2 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 36 |
33 34 35
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝑌 − 𝑋 ) ) ∈ ℝ ) |
| 37 |
36 31
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 38 |
3
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 39 |
15 9
|
readdcld |
⊢ ( 𝜑 → ( 𝑌 + 𝑋 ) ∈ ℝ ) |
| 40 |
38 39
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑌 + 𝑋 ) ) ∈ ℝ ) |
| 41 |
1
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 42 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 43 |
33 41 42
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 44 |
43 15
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ∈ ℝ ) |
| 45 |
40 44
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ∈ ℝ ) |
| 46 |
37 45
|
readdcld |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) ∈ ℝ ) |
| 47 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 48 |
10 47
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ ) |
| 49 |
38 48
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 50 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 51 |
33 10 50
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℝ ) |
| 52 |
51 41
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 53 |
49 52
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐴 + 1 ) ) + ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 54 |
5 53
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 55 |
54 9
|
remulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ ℝ ) |
| 56 |
37 55
|
readdcld |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( 𝐶 · 𝑋 ) ) ∈ ℝ ) |
| 57 |
17 31
|
remulcld |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 58 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) |
| 59 |
14
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 60 |
|
flword2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) |
| 61 |
9 15 59 60
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) |
| 62 |
|
fzss2 |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) → ( 1 ... ( ⌊ ‘ 𝑋 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝑋 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 64 |
63
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 65 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) → 𝑛 ∈ ℕ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑛 ∈ ℕ ) |
| 67 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 69 |
|
nndivre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑋 / 𝑛 ) ∈ ℝ ) |
| 70 |
9 65 69
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑋 / 𝑛 ) ∈ ℝ ) |
| 71 |
|
chpcl |
⊢ ( ( 𝑋 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑋 / 𝑛 ) ) ∈ ℝ ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ψ ‘ ( 𝑋 / 𝑛 ) ) ∈ ℝ ) |
| 73 |
68 72
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ∈ ℝ ) |
| 74 |
64 73
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ∈ ℝ ) |
| 75 |
58 74
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ∈ ℝ ) |
| 76 |
57 75
|
readdcld |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 77 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝑋 ) ∈ ℝ ) → ( 2 · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 78 |
33 31 77
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 79 |
78 38
|
resubcld |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) ∈ ℝ ) |
| 80 |
79 9
|
remulcld |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ∈ ℝ ) |
| 81 |
1 30
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℝ+ ) |
| 82 |
81
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 · 𝑋 ) ) ∈ ℝ ) |
| 83 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ ( 𝐴 · 𝑋 ) ) ∈ ℝ ) → ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ∈ ℝ ) |
| 84 |
33 82 83
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ∈ ℝ ) |
| 85 |
38 84
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ∈ ℝ ) |
| 86 |
85 15
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) ∈ ℝ ) |
| 87 |
19 31
|
remulcld |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 88 |
87 75
|
readdcld |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 89 |
21 9 15 29 59
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑌 ) |
| 90 |
15 89
|
elrpd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
| 91 |
90
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑌 ) ∈ ℝ ) |
| 92 |
17 91
|
remulcld |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 93 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝑌 ) ) ∈ Fin ) |
| 94 |
|
nndivre |
⊢ ( ( 𝑌 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑌 / 𝑛 ) ∈ ℝ ) |
| 95 |
15 65 94
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑌 / 𝑛 ) ∈ ℝ ) |
| 96 |
|
chpcl |
⊢ ( ( 𝑌 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑌 / 𝑛 ) ) ∈ ℝ ) |
| 97 |
95 96
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ψ ‘ ( 𝑌 / 𝑛 ) ) ∈ ℝ ) |
| 98 |
68 97
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ∈ ℝ ) |
| 99 |
93 98
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ∈ ℝ ) |
| 100 |
92 99
|
readdcld |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 101 |
|
chpge0 |
⊢ ( 𝑌 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑌 ) ) |
| 102 |
15 101
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ψ ‘ 𝑌 ) ) |
| 103 |
30 90
|
logled |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( log ‘ 𝑋 ) ≤ ( log ‘ 𝑌 ) ) ) |
| 104 |
59 103
|
mpbid |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ≤ ( log ‘ 𝑌 ) ) |
| 105 |
31 91 17 102 104
|
lemul2ad |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) ≤ ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) ) |
| 106 |
93 73
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ∈ ℝ ) |
| 107 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 108 |
66 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 109 |
|
chpge0 |
⊢ ( ( 𝑋 / 𝑛 ) ∈ ℝ → 0 ≤ ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) |
| 110 |
70 109
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 0 ≤ ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) |
| 111 |
68 72 108 110
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) |
| 112 |
93 73 111 63
|
fsumless |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) |
| 113 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑋 ∈ ℝ ) |
| 114 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑌 ∈ ℝ ) |
| 115 |
66
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 116 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑋 ≤ 𝑌 ) |
| 117 |
113 114 115 116
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑋 / 𝑛 ) ≤ ( 𝑌 / 𝑛 ) ) |
| 118 |
|
chpwordi |
⊢ ( ( ( 𝑋 / 𝑛 ) ∈ ℝ ∧ ( 𝑌 / 𝑛 ) ∈ ℝ ∧ ( 𝑋 / 𝑛 ) ≤ ( 𝑌 / 𝑛 ) ) → ( ψ ‘ ( 𝑋 / 𝑛 ) ) ≤ ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) |
| 119 |
70 95 117 118
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ψ ‘ ( 𝑋 / 𝑛 ) ) ≤ ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) |
| 120 |
72 97 68 108 119
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ≤ ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 121 |
93 73 98 120
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 122 |
75 106 99 112 121
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 123 |
57 75 92 99 105 122
|
le2addd |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ≤ ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) ) |
| 124 |
100 90
|
rerpdivcld |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ∈ ℝ ) |
| 125 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝑌 ) ∈ ℝ ) → ( 2 · ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 126 |
33 91 125
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 127 |
38 126
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ 𝑌 ) ) ) ∈ ℝ ) |
| 128 |
124 126
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ∈ ℝ ) |
| 129 |
128
|
recnd |
⊢ ( 𝜑 → ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ∈ ℂ ) |
| 130 |
129
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) ∈ ℝ ) |
| 131 |
128
|
leabsd |
⊢ ( 𝜑 → ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ≤ ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) ) |
| 132 |
|
fveq2 |
⊢ ( 𝑧 = 𝑌 → ( ψ ‘ 𝑧 ) = ( ψ ‘ 𝑌 ) ) |
| 133 |
|
fveq2 |
⊢ ( 𝑧 = 𝑌 → ( log ‘ 𝑧 ) = ( log ‘ 𝑌 ) ) |
| 134 |
132 133
|
oveq12d |
⊢ ( 𝑧 = 𝑌 → ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) = ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( Λ ‘ 𝑚 ) = ( Λ ‘ 𝑛 ) ) |
| 136 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 / 𝑚 ) = ( 𝑧 / 𝑛 ) ) |
| 137 |
136
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( ψ ‘ ( 𝑧 / 𝑚 ) ) = ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) |
| 138 |
135 137
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) ) |
| 139 |
138
|
cbvsumv |
⊢ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) |
| 140 |
|
fveq2 |
⊢ ( 𝑧 = 𝑌 → ( ⌊ ‘ 𝑧 ) = ( ⌊ ‘ 𝑌 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( 𝑧 = 𝑌 → ( 1 ... ( ⌊ ‘ 𝑧 ) ) = ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 142 |
|
simpl |
⊢ ( ( 𝑧 = 𝑌 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑧 = 𝑌 ) |
| 143 |
142
|
fvoveq1d |
⊢ ( ( 𝑧 = 𝑌 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ψ ‘ ( 𝑧 / 𝑛 ) ) = ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( 𝑧 = 𝑌 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 145 |
141 144
|
sumeq12rdv |
⊢ ( 𝑧 = 𝑌 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 146 |
139 145
|
eqtrid |
⊢ ( 𝑧 = 𝑌 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) |
| 147 |
134 146
|
oveq12d |
⊢ ( 𝑧 = 𝑌 → ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) = ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) ) |
| 148 |
|
id |
⊢ ( 𝑧 = 𝑌 → 𝑧 = 𝑌 ) |
| 149 |
147 148
|
oveq12d |
⊢ ( 𝑧 = 𝑌 → ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) = ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ) |
| 150 |
133
|
oveq2d |
⊢ ( 𝑧 = 𝑌 → ( 2 · ( log ‘ 𝑧 ) ) = ( 2 · ( log ‘ 𝑌 ) ) ) |
| 151 |
149 150
|
oveq12d |
⊢ ( 𝑧 = 𝑌 → ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) = ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) |
| 152 |
151
|
fveq2d |
⊢ ( 𝑧 = 𝑌 → ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) ) = ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) ) |
| 153 |
152
|
breq1d |
⊢ ( 𝑧 = 𝑌 → ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) ) ≤ 𝐵 ↔ ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) ≤ 𝐵 ) ) |
| 154 |
23 9 28
|
ltled |
⊢ ( 𝜑 → 1 ≤ 𝑋 ) |
| 155 |
23 9 15 154 59
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝑌 ) |
| 156 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑌 ∈ ( 1 [,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 1 ≤ 𝑌 ) ) ) |
| 157 |
22 156
|
ax-mp |
⊢ ( 𝑌 ∈ ( 1 [,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 1 ≤ 𝑌 ) ) |
| 158 |
15 155 157
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( 1 [,) +∞ ) ) |
| 159 |
153 4 158
|
rspcdva |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ) ≤ 𝐵 ) |
| 160 |
128 130 38 131 159
|
letrd |
⊢ ( 𝜑 → ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ≤ 𝐵 ) |
| 161 |
124 126 38
|
lesubaddd |
⊢ ( 𝜑 → ( ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) − ( 2 · ( log ‘ 𝑌 ) ) ) ≤ 𝐵 ↔ ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ≤ ( 𝐵 + ( 2 · ( log ‘ 𝑌 ) ) ) ) ) |
| 162 |
160 161
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ≤ ( 𝐵 + ( 2 · ( log ‘ 𝑌 ) ) ) ) |
| 163 |
14
|
simp3d |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝐴 · 𝑋 ) ) |
| 164 |
90 81
|
logled |
⊢ ( 𝜑 → ( 𝑌 ≤ ( 𝐴 · 𝑋 ) ↔ ( log ‘ 𝑌 ) ≤ ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) |
| 165 |
163 164
|
mpbid |
⊢ ( 𝜑 → ( log ‘ 𝑌 ) ≤ ( log ‘ ( 𝐴 · 𝑋 ) ) ) |
| 166 |
|
2pos |
⊢ 0 < 2 |
| 167 |
33 166
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 168 |
167
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 169 |
|
lemul2 |
⊢ ( ( ( log ‘ 𝑌 ) ∈ ℝ ∧ ( log ‘ ( 𝐴 · 𝑋 ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( log ‘ 𝑌 ) ≤ ( log ‘ ( 𝐴 · 𝑋 ) ) ↔ ( 2 · ( log ‘ 𝑌 ) ) ≤ ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ) |
| 170 |
91 82 168 169
|
syl3anc |
⊢ ( 𝜑 → ( ( log ‘ 𝑌 ) ≤ ( log ‘ ( 𝐴 · 𝑋 ) ) ↔ ( 2 · ( log ‘ 𝑌 ) ) ≤ ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ) |
| 171 |
165 170
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑌 ) ) ≤ ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) |
| 172 |
126 84 38 171
|
leadd2dd |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ 𝑌 ) ) ) ≤ ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ) |
| 173 |
124 127 85 162 172
|
letrd |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ≤ ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ) |
| 174 |
100 85 90
|
ledivmul2d |
⊢ ( 𝜑 → ( ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) / 𝑌 ) ≤ ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) ↔ ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) ≤ ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) ) ) |
| 175 |
173 174
|
mpbid |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑌 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑌 / 𝑛 ) ) ) ) ≤ ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) ) |
| 176 |
76 100 86 123 175
|
letrd |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ≤ ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( ψ ‘ 𝑧 ) = ( ψ ‘ 𝑋 ) ) |
| 178 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( log ‘ 𝑧 ) = ( log ‘ 𝑋 ) ) |
| 179 |
177 178
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) = ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) ) |
| 180 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( ⌊ ‘ 𝑧 ) = ( ⌊ ‘ 𝑋 ) ) |
| 181 |
180
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( 1 ... ( ⌊ ‘ 𝑧 ) ) = ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 182 |
|
simpl |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑧 = 𝑋 ) |
| 183 |
182
|
fvoveq1d |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ψ ‘ ( 𝑧 / 𝑛 ) ) = ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) |
| 184 |
183
|
oveq2d |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) |
| 185 |
181 184
|
sumeq12rdv |
⊢ ( 𝑧 = 𝑋 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑧 / 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) |
| 186 |
139 185
|
eqtrid |
⊢ ( 𝑧 = 𝑋 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) |
| 187 |
179 186
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) = ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ) |
| 188 |
|
id |
⊢ ( 𝑧 = 𝑋 → 𝑧 = 𝑋 ) |
| 189 |
187 188
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) = ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ) |
| 190 |
178
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( 2 · ( log ‘ 𝑧 ) ) = ( 2 · ( log ‘ 𝑋 ) ) ) |
| 191 |
189 190
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) = ( ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) − ( 2 · ( log ‘ 𝑋 ) ) ) ) |
| 192 |
191
|
fveq2d |
⊢ ( 𝑧 = 𝑋 → ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) ) = ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) − ( 2 · ( log ‘ 𝑋 ) ) ) ) ) |
| 193 |
192
|
breq1d |
⊢ ( 𝑧 = 𝑋 → ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑧 ) · ( log ‘ 𝑧 ) ) + Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑧 ) ) ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑧 / 𝑚 ) ) ) ) / 𝑧 ) − ( 2 · ( log ‘ 𝑧 ) ) ) ) ≤ 𝐵 ↔ ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) − ( 2 · ( log ‘ 𝑋 ) ) ) ) ≤ 𝐵 ) ) |
| 194 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑋 ∈ ( 1 [,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 1 ≤ 𝑋 ) ) ) |
| 195 |
22 194
|
ax-mp |
⊢ ( 𝑋 ∈ ( 1 [,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 1 ≤ 𝑋 ) ) |
| 196 |
9 154 195
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 [,) +∞ ) ) |
| 197 |
193 4 196
|
rspcdva |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) − ( 2 · ( log ‘ 𝑋 ) ) ) ) ≤ 𝐵 ) |
| 198 |
88 30
|
rerpdivcld |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ∈ ℝ ) |
| 199 |
198 78 38
|
absdifled |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) − ( 2 · ( log ‘ 𝑋 ) ) ) ) ≤ 𝐵 ↔ ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) ≤ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ∧ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ≤ ( ( 2 · ( log ‘ 𝑋 ) ) + 𝐵 ) ) ) ) |
| 200 |
197 199
|
mpbid |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) ≤ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ∧ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ≤ ( ( 2 · ( log ‘ 𝑋 ) ) + 𝐵 ) ) ) |
| 201 |
200
|
simpld |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) ≤ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ) |
| 202 |
79 88 30
|
lemuldivd |
⊢ ( 𝜑 → ( ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ≤ ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ↔ ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) ≤ ( ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) / 𝑋 ) ) ) |
| 203 |
201 202
|
mpbird |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ≤ ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ) |
| 204 |
76 80 86 88 176 203
|
le2subd |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) − ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ) ≤ ( ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) − ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ) ) |
| 205 |
57
|
recnd |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) ∈ ℂ ) |
| 206 |
87
|
recnd |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) ∈ ℂ ) |
| 207 |
75
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ∈ ℂ ) |
| 208 |
205 206 207
|
pnpcan2d |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) − ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ) = ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) − ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) ) ) |
| 209 |
17
|
recnd |
⊢ ( 𝜑 → ( ψ ‘ 𝑌 ) ∈ ℂ ) |
| 210 |
19
|
recnd |
⊢ ( 𝜑 → ( ψ ‘ 𝑋 ) ∈ ℂ ) |
| 211 |
31
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 212 |
209 210 211
|
subdird |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) = ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) − ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) ) ) |
| 213 |
208 212
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( ψ ‘ 𝑌 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) − ( ( ( ψ ‘ 𝑋 ) · ( log ‘ 𝑋 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑋 / 𝑛 ) ) ) ) ) = ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ) |
| 214 |
78 15
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) ∈ ℝ ) |
| 215 |
214
|
recnd |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) ∈ ℂ ) |
| 216 |
38 43
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 217 |
216 15
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ∈ ℝ ) |
| 218 |
217
|
recnd |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ∈ ℂ ) |
| 219 |
78 9
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ∈ ℝ ) |
| 220 |
219
|
recnd |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ∈ ℂ ) |
| 221 |
38 9
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ ℝ ) |
| 222 |
221
|
recnd |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ ℂ ) |
| 223 |
222
|
negcld |
⊢ ( 𝜑 → - ( 𝐵 · 𝑋 ) ∈ ℂ ) |
| 224 |
215 218 220 223
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) + ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ) − ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) + - ( 𝐵 · 𝑋 ) ) ) = ( ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) − ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ) + ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) − - ( 𝐵 · 𝑋 ) ) ) ) |
| 225 |
41
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 226 |
1 30
|
relogmuld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 · 𝑋 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝑋 ) ) ) |
| 227 |
225 211 226
|
comraddd |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 · 𝑋 ) ) = ( ( log ‘ 𝑋 ) + ( log ‘ 𝐴 ) ) ) |
| 228 |
227
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) = ( 2 · ( ( log ‘ 𝑋 ) + ( log ‘ 𝐴 ) ) ) ) |
| 229 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 230 |
229 211 225
|
adddid |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 𝑋 ) + ( log ‘ 𝐴 ) ) ) = ( ( 2 · ( log ‘ 𝑋 ) ) + ( 2 · ( log ‘ 𝐴 ) ) ) ) |
| 231 |
228 230
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) = ( ( 2 · ( log ‘ 𝑋 ) ) + ( 2 · ( log ‘ 𝐴 ) ) ) ) |
| 232 |
231
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) = ( 𝐵 + ( ( 2 · ( log ‘ 𝑋 ) ) + ( 2 · ( log ‘ 𝐴 ) ) ) ) ) |
| 233 |
38
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 234 |
78
|
recnd |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑋 ) ) ∈ ℂ ) |
| 235 |
43
|
recnd |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 236 |
233 234 235
|
add12d |
⊢ ( 𝜑 → ( 𝐵 + ( ( 2 · ( log ‘ 𝑋 ) ) + ( 2 · ( log ‘ 𝐴 ) ) ) ) = ( ( 2 · ( log ‘ 𝑋 ) ) + ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ) ) |
| 237 |
232 236
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) = ( ( 2 · ( log ‘ 𝑋 ) ) + ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ) ) |
| 238 |
237
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) + ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ) · 𝑌 ) ) |
| 239 |
216
|
recnd |
⊢ ( 𝜑 → ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 240 |
15
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 241 |
234 239 240
|
adddird |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) + ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) ) · 𝑌 ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) + ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ) ) |
| 242 |
238 241
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) + ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ) ) |
| 243 |
9
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 244 |
234 233 243
|
subdird |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 245 |
220 222
|
negsubd |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) + - ( 𝐵 · 𝑋 ) ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 246 |
244 245
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) + - ( 𝐵 · 𝑋 ) ) ) |
| 247 |
242 246
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) − ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ) = ( ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) + ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) ) − ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) + - ( 𝐵 · 𝑋 ) ) ) ) |
| 248 |
34
|
recnd |
⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 249 |
229 248 211
|
mul32d |
⊢ ( 𝜑 → ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) = ( ( 2 · ( log ‘ 𝑋 ) ) · ( 𝑌 − 𝑋 ) ) ) |
| 250 |
234 240 243
|
subdid |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑋 ) ) · ( 𝑌 − 𝑋 ) ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) − ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ) ) |
| 251 |
249 250
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) = ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) − ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ) ) |
| 252 |
38 15
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ℝ ) |
| 253 |
252
|
recnd |
⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ℂ ) |
| 254 |
44
|
recnd |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ∈ ℂ ) |
| 255 |
253 222 254
|
add32d |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝑌 ) + ( 𝐵 · 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) = ( ( ( 𝐵 · 𝑌 ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) + ( 𝐵 · 𝑋 ) ) ) |
| 256 |
233 240 243
|
adddid |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑌 + 𝑋 ) ) = ( ( 𝐵 · 𝑌 ) + ( 𝐵 · 𝑋 ) ) ) |
| 257 |
256
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) = ( ( ( 𝐵 · 𝑌 ) + ( 𝐵 · 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) |
| 258 |
233 235 240
|
adddird |
⊢ ( 𝜑 → ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) = ( ( 𝐵 · 𝑌 ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) |
| 259 |
258
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) + ( 𝐵 · 𝑋 ) ) = ( ( ( 𝐵 · 𝑌 ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) + ( 𝐵 · 𝑋 ) ) ) |
| 260 |
255 257 259
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) = ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) + ( 𝐵 · 𝑋 ) ) ) |
| 261 |
218 222
|
subnegd |
⊢ ( 𝜑 → ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) − - ( 𝐵 · 𝑋 ) ) = ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) + ( 𝐵 · 𝑋 ) ) ) |
| 262 |
260 261
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) = ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) − - ( 𝐵 · 𝑋 ) ) ) |
| 263 |
251 262
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) = ( ( ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑌 ) − ( ( 2 · ( log ‘ 𝑋 ) ) · 𝑋 ) ) + ( ( ( 𝐵 + ( 2 · ( log ‘ 𝐴 ) ) ) · 𝑌 ) − - ( 𝐵 · 𝑋 ) ) ) ) |
| 264 |
224 247 263
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐵 + ( 2 · ( log ‘ ( 𝐴 · 𝑋 ) ) ) ) · 𝑌 ) − ( ( ( 2 · ( log ‘ 𝑋 ) ) − 𝐵 ) · 𝑋 ) ) = ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) ) |
| 265 |
204 213 264
|
3brtr3d |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ≤ ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) ) |
| 266 |
49 9
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) ∈ ℝ ) |
| 267 |
52 9
|
remulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) ∈ ℝ ) |
| 268 |
15 11 9 163
|
leadd1dd |
⊢ ( 𝜑 → ( 𝑌 + 𝑋 ) ≤ ( ( 𝐴 · 𝑋 ) + 𝑋 ) ) |
| 269 |
10
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 270 |
269 243
|
adddirp1d |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) + 𝑋 ) ) |
| 271 |
268 270
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑌 + 𝑋 ) ≤ ( ( 𝐴 + 1 ) · 𝑋 ) ) |
| 272 |
48 9
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · 𝑋 ) ∈ ℝ ) |
| 273 |
39 272 3
|
lemul2d |
⊢ ( 𝜑 → ( ( 𝑌 + 𝑋 ) ≤ ( ( 𝐴 + 1 ) · 𝑋 ) ↔ ( 𝐵 · ( 𝑌 + 𝑋 ) ) ≤ ( 𝐵 · ( ( 𝐴 + 1 ) · 𝑋 ) ) ) ) |
| 274 |
271 273
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑌 + 𝑋 ) ) ≤ ( 𝐵 · ( ( 𝐴 + 1 ) · 𝑋 ) ) ) |
| 275 |
48
|
recnd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℂ ) |
| 276 |
233 275 243
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) = ( 𝐵 · ( ( 𝐴 + 1 ) · 𝑋 ) ) ) |
| 277 |
274 276
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑌 + 𝑋 ) ) ≤ ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) ) |
| 278 |
33
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 279 |
|
0le2 |
⊢ 0 ≤ 2 |
| 280 |
279
|
a1i |
⊢ ( 𝜑 → 0 ≤ 2 ) |
| 281 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 282 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 283 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 1 ≤ 𝐴 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) ) |
| 284 |
282 1 283
|
sylancr |
⊢ ( 𝜑 → ( 1 ≤ 𝐴 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) ) |
| 285 |
2 284
|
mpbid |
⊢ ( 𝜑 → ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) |
| 286 |
281 285
|
eqbrtrrid |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝐴 ) ) |
| 287 |
278 41 280 286
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · ( log ‘ 𝐴 ) ) ) |
| 288 |
15 11 43 287 163
|
lemul2ad |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ≤ ( ( 2 · ( log ‘ 𝐴 ) ) · ( 𝐴 · 𝑋 ) ) ) |
| 289 |
51
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℂ ) |
| 290 |
289 225 243
|
mulassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) = ( ( 2 · 𝐴 ) · ( ( log ‘ 𝐴 ) · 𝑋 ) ) ) |
| 291 |
229 269 225 243
|
mul4d |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) · ( ( log ‘ 𝐴 ) · 𝑋 ) ) = ( ( 2 · ( log ‘ 𝐴 ) ) · ( 𝐴 · 𝑋 ) ) ) |
| 292 |
290 291
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) = ( ( 2 · ( log ‘ 𝐴 ) ) · ( 𝐴 · 𝑋 ) ) ) |
| 293 |
288 292
|
breqtrrd |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ≤ ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) ) |
| 294 |
40 44 266 267 277 293
|
le2addd |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ≤ ( ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) + ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) ) ) |
| 295 |
5
|
oveq1i |
⊢ ( 𝐶 · 𝑋 ) = ( ( ( 𝐵 · ( 𝐴 + 1 ) ) + ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ) · 𝑋 ) |
| 296 |
49
|
recnd |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 297 |
52
|
recnd |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 298 |
296 297 243
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐵 · ( 𝐴 + 1 ) ) + ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) ) · 𝑋 ) = ( ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) + ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) ) ) |
| 299 |
295 298
|
eqtrid |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) = ( ( ( 𝐵 · ( 𝐴 + 1 ) ) · 𝑋 ) + ( ( ( 2 · 𝐴 ) · ( log ‘ 𝐴 ) ) · 𝑋 ) ) ) |
| 300 |
294 299
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ≤ ( 𝐶 · 𝑋 ) ) |
| 301 |
45 55 37 300
|
leadd2dd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐵 · ( 𝑌 + 𝑋 ) ) + ( ( 2 · ( log ‘ 𝐴 ) ) · 𝑌 ) ) ) ≤ ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( 𝐶 · 𝑋 ) ) ) |
| 302 |
32 46 56 265 301
|
letrd |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ≤ ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( 𝐶 · 𝑋 ) ) ) |
| 303 |
36
|
recnd |
⊢ ( 𝜑 → ( 2 · ( 𝑌 − 𝑋 ) ) ∈ ℂ ) |
| 304 |
9 28
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℝ+ ) |
| 305 |
9 304
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝑋 / ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 306 |
54 305
|
remulcld |
⊢ ( 𝜑 → ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 307 |
306
|
recnd |
⊢ ( 𝜑 → ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ∈ ℂ ) |
| 308 |
303 307 211
|
adddird |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) · ( log ‘ 𝑋 ) ) = ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) · ( log ‘ 𝑋 ) ) ) ) |
| 309 |
54
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 310 |
305
|
recnd |
⊢ ( 𝜑 → ( 𝑋 / ( log ‘ 𝑋 ) ) ∈ ℂ ) |
| 311 |
309 310 211
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) · ( log ‘ 𝑋 ) ) = ( 𝐶 · ( ( 𝑋 / ( log ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ) ) |
| 312 |
304
|
rpne0d |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ≠ 0 ) |
| 313 |
243 211 312
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑋 / ( log ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) = 𝑋 ) |
| 314 |
313
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( ( 𝑋 / ( log ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ) = ( 𝐶 · 𝑋 ) ) |
| 315 |
311 314
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) · ( log ‘ 𝑋 ) ) = ( 𝐶 · 𝑋 ) ) |
| 316 |
315
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) · ( log ‘ 𝑋 ) ) ) = ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( 𝐶 · 𝑋 ) ) ) |
| 317 |
308 316
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) · ( log ‘ 𝑋 ) ) = ( ( ( 2 · ( 𝑌 − 𝑋 ) ) · ( log ‘ 𝑋 ) ) + ( 𝐶 · 𝑋 ) ) ) |
| 318 |
302 317
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ≤ ( ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) · ( log ‘ 𝑋 ) ) ) |
| 319 |
36 306
|
readdcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
| 320 |
20 319 304
|
lemul1d |
⊢ ( 𝜑 → ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) ≤ ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) ↔ ( ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) · ( log ‘ 𝑋 ) ) ≤ ( ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) · ( log ‘ 𝑋 ) ) ) ) |
| 321 |
318 320
|
mpbird |
⊢ ( 𝜑 → ( ( ψ ‘ 𝑌 ) − ( ψ ‘ 𝑋 ) ) ≤ ( ( 2 · ( 𝑌 − 𝑋 ) ) + ( 𝐶 · ( 𝑋 / ( log ‘ 𝑋 ) ) ) ) ) |