| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chpdmat.c | 
							⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							chpdmat.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							chpdmat.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							chpdmat.s | 
							⊢ 𝑆  =  ( algSc ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							chpdmat.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							chpdmat.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							chpdmat.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							chpdmat.g | 
							⊢ 𝐺  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							chpdmat.m | 
							⊢  −   =  ( -g ‘ 𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							chpdmatlem.q | 
							⊢ 𝑄  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							chpdmatlem.1 | 
							⊢  1   =  ( 1r ‘ 𝑄 )  | 
						
						
							| 12 | 
							
								
							 | 
							chpdmatlem.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑄 )  | 
						
						
							| 13 | 
							
								2 10
							 | 
							pmatlmod | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 15 | 
							
								6 2 14
							 | 
							vr1cl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 17 | 
							
								2
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 18 | 
							
								10
							 | 
							matsca2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝑄 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylan2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝑄 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑄 )  =  𝑃 )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ 𝑃 ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							eleqtrrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) )  | 
						
						
							| 23 | 
							
								2 10
							 | 
							pmatring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 )  | 
						
						
							| 25 | 
							
								24 11
							 | 
							ringidcl | 
							⊢ ( 𝑄  ∈  Ring  →   1   ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) )  | 
						
						
							| 29 | 
							
								24 27 12 28
							 | 
							lmodvscl | 
							⊢ ( ( 𝑄  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧   1   ∈  ( Base ‘ 𝑄 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 30 | 
							
								13 22 26 29
							 | 
							syl3anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑄 ) )  |