Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chpdmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
chpdmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
chpdmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
5 |
|
chpdmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
6 |
|
chpdmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
chpdmat.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
8 |
|
chpdmat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
9 |
|
chpdmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
10 |
|
chpdmatlem.q |
⊢ 𝑄 = ( 𝑁 Mat 𝑃 ) |
11 |
|
chpdmatlem.1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
12 |
|
chpdmatlem.m |
⊢ · = ( ·𝑠 ‘ 𝑄 ) |
13 |
2 10
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
15 |
6 2 14
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
17 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
18 |
10
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑃 = ( Scalar ‘ 𝑄 ) ) |
19 |
17 18
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑃 = ( Scalar ‘ 𝑄 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑄 ) = 𝑃 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ 𝑃 ) ) |
22 |
16 21
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
23 |
2 10
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
25 |
24 11
|
ringidcl |
⊢ ( 𝑄 ∈ Ring → 1 ∈ ( Base ‘ 𝑄 ) ) |
26 |
23 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 ∈ ( Base ‘ 𝑄 ) ) |
27 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
29 |
24 27 12 28
|
lmodvscl |
⊢ ( ( 𝑄 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ 1 ∈ ( Base ‘ 𝑄 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
30 |
13 22 26 29
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |