Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
2 |
|
chpdmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
chpdmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
chpdmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
5 |
|
chpdmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
6 |
|
chpdmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
chpdmat.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
8 |
|
chpdmat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
9 |
|
chpdmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
10 |
|
chpdmatlem.q |
⊢ 𝑄 = ( 𝑁 Mat 𝑃 ) |
11 |
|
chpdmatlem.1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
12 |
|
chpdmatlem.m |
⊢ · = ( ·𝑠 ‘ 𝑄 ) |
13 |
|
chpdmatlem.z |
⊢ 𝑍 = ( -g ‘ 𝑄 ) |
14 |
|
chpdmatlem.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
15 |
2 10
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑄 ∈ Ring ) |
17 |
|
ringgrp |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Grp ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑄 ∈ Grp ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ) |
21 |
14 3 5 2 10
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
23 |
22 13
|
grpsubcl |
⊢ ( ( 𝑄 ∈ Grp ∧ ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑋 · 1 ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑄 ) ) |
24 |
18 20 21 23
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) 𝑍 ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑄 ) ) |