Metamath Proof Explorer


Theorem chpdmatlem1

Description: Lemma 1 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
chpdmat.p 𝑃 = ( Poly1𝑅 )
chpdmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
chpdmat.s 𝑆 = ( algSc ‘ 𝑃 )
chpdmat.b 𝐵 = ( Base ‘ 𝐴 )
chpdmat.x 𝑋 = ( var1𝑅 )
chpdmat.0 0 = ( 0g𝑅 )
chpdmat.g 𝐺 = ( mulGrp ‘ 𝑃 )
chpdmat.m = ( -g𝑃 )
chpdmatlem.q 𝑄 = ( 𝑁 Mat 𝑃 )
chpdmatlem.1 1 = ( 1r𝑄 )
chpdmatlem.m · = ( ·𝑠𝑄 )
chpdmatlem.z 𝑍 = ( -g𝑄 )
chpdmatlem.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
Assertion chpdmatlem1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( ( 𝑋 · 1 ) 𝑍 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑄 ) )

Proof

Step Hyp Ref Expression
1 chpdmat.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
2 chpdmat.p 𝑃 = ( Poly1𝑅 )
3 chpdmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 chpdmat.s 𝑆 = ( algSc ‘ 𝑃 )
5 chpdmat.b 𝐵 = ( Base ‘ 𝐴 )
6 chpdmat.x 𝑋 = ( var1𝑅 )
7 chpdmat.0 0 = ( 0g𝑅 )
8 chpdmat.g 𝐺 = ( mulGrp ‘ 𝑃 )
9 chpdmat.m = ( -g𝑃 )
10 chpdmatlem.q 𝑄 = ( 𝑁 Mat 𝑃 )
11 chpdmatlem.1 1 = ( 1r𝑄 )
12 chpdmatlem.m · = ( ·𝑠𝑄 )
13 chpdmatlem.z 𝑍 = ( -g𝑄 )
14 chpdmatlem.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
15 2 10 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring )
16 15 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑄 ∈ Ring )
17 ringgrp ( 𝑄 ∈ Ring → 𝑄 ∈ Grp )
18 16 17 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑄 ∈ Grp )
19 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) )
20 19 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) )
21 14 3 5 2 10 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑄 ) )
22 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
23 22 13 grpsubcl ( ( 𝑄 ∈ Grp ∧ ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑋 · 1 ) 𝑍 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑄 ) )
24 18 20 21 23 syl3anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( ( 𝑋 · 1 ) 𝑍 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑄 ) )