Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
lenlt |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 2 ≤ 𝐴 ↔ ¬ 𝐴 < 2 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 2 ≤ 𝐴 ↔ ¬ 𝐴 < 2 ) ) |
4 |
|
chprpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ∈ ℝ+ ) |
5 |
4
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ≠ 0 ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 2 ≤ 𝐴 → ( ψ ‘ 𝐴 ) ≠ 0 ) ) |
7 |
3 6
|
sylbird |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 < 2 → ( ψ ‘ 𝐴 ) ≠ 0 ) ) |
8 |
7
|
necon4bd |
⊢ ( 𝐴 ∈ ℝ → ( ( ψ ‘ 𝐴 ) = 0 → 𝐴 < 2 ) ) |
9 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
11 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → 1 ∈ ℝ ) |
12 |
|
2z |
⊢ 2 ∈ ℤ |
13 |
|
fllt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℤ ) → ( 𝐴 < 2 ↔ ( ⌊ ‘ 𝐴 ) < 2 ) ) |
14 |
12 13
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 2 ↔ ( ⌊ ‘ 𝐴 ) < 2 ) ) |
15 |
14
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ⌊ ‘ 𝐴 ) < 2 ) |
16 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
17 |
15 16
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ⌊ ‘ 𝐴 ) < ( 1 + 1 ) ) |
18 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
20 |
|
1z |
⊢ 1 ∈ ℤ |
21 |
|
zleltp1 |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) < ( 1 + 1 ) ) ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ( ⌊ ‘ 𝐴 ) ≤ 1 ↔ ( ⌊ ‘ 𝐴 ) < ( 1 + 1 ) ) ) |
23 |
17 22
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ⌊ ‘ 𝐴 ) ≤ 1 ) |
24 |
|
chpwordi |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ≤ 1 ) → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ψ ‘ 1 ) ) |
25 |
10 11 23 24
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ψ ‘ 1 ) ) |
26 |
|
chpfl |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ψ ‘ 𝐴 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ ( ⌊ ‘ 𝐴 ) ) = ( ψ ‘ 𝐴 ) ) |
28 |
|
chp1 |
⊢ ( ψ ‘ 1 ) = 0 |
29 |
28
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ 1 ) = 0 ) |
30 |
25 27 29
|
3brtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ 𝐴 ) ≤ 0 ) |
31 |
|
chpge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ψ ‘ 𝐴 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → 0 ≤ ( ψ ‘ 𝐴 ) ) |
33 |
|
chpcl |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ 𝐴 ) ∈ ℝ ) |
35 |
|
0re |
⊢ 0 ∈ ℝ |
36 |
|
letri3 |
⊢ ( ( ( ψ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ψ ‘ 𝐴 ) = 0 ↔ ( ( ψ ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( ψ ‘ 𝐴 ) ) ) ) |
37 |
34 35 36
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ( ψ ‘ 𝐴 ) = 0 ↔ ( ( ψ ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( ψ ‘ 𝐴 ) ) ) ) |
38 |
30 32 37
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 2 ) → ( ψ ‘ 𝐴 ) = 0 ) |
39 |
38
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 2 → ( ψ ‘ 𝐴 ) = 0 ) ) |
40 |
8 39
|
impbid |
⊢ ( 𝐴 ∈ ℝ → ( ( ψ ‘ 𝐴 ) = 0 ↔ 𝐴 < 2 ) ) |