Description: The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | chpge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ψ ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
2 | efchpcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ψ ‘ 𝐴 ) ) ∈ ℕ ) | |
3 | 2 | nnge1d | ⊢ ( 𝐴 ∈ ℝ → 1 ≤ ( exp ‘ ( ψ ‘ 𝐴 ) ) ) |
4 | 1 3 | eqbrtrid | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 0 ) ≤ ( exp ‘ ( ψ ‘ 𝐴 ) ) ) |
5 | 0re | ⊢ 0 ∈ ℝ | |
6 | chpcl | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) ∈ ℝ ) | |
7 | efle | ⊢ ( ( 0 ∈ ℝ ∧ ( ψ ‘ 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( ψ ‘ 𝐴 ) ↔ ( exp ‘ 0 ) ≤ ( exp ‘ ( ψ ‘ 𝐴 ) ) ) ) | |
8 | 5 6 7 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ ( ψ ‘ 𝐴 ) ↔ ( exp ‘ 0 ) ≤ ( exp ‘ ( ψ ‘ 𝐴 ) ) ) ) |
9 | 4 8 | mpbird | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ψ ‘ 𝐴 ) ) |