| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 2 |
|
chp0mat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
chp0mat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
chp0mat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
chp0mat.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 6 |
|
chp0mat.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 7 |
|
chpidmat.i |
⊢ 𝐼 = ( 1r ‘ 𝐴 ) |
| 8 |
|
chpidmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 9 |
|
chpidmat.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 10 |
|
chpidmat.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 11 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑁 ∈ Fin ) |
| 12 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 14 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 15 |
13 14
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 17 |
16 7
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
| 18 |
15 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 20 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑁 ∈ Fin ) |
| 21 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑅 ∈ Ring ) |
| 23 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝑁 ) |
| 24 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝑁 ) |
| 25 |
3 9 19 20 22 23 24 7
|
mat1ov |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 26 |
|
ifnefalse |
⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 28 |
25 27
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 29 |
28
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
| 30 |
29
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) |
| 31 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 32 |
1 2 3 8 16 4 19 5 31
|
chpdmat |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ ( Base ‘ 𝐴 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝐼 𝑗 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝐶 ‘ 𝐼 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) ) |
| 33 |
11 12 18 30 32
|
syl31anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 𝐼 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) ) |
| 34 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 35 |
21
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 37 |
3 9 19 34 35 36 36 7
|
mat1ov |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝐼 𝑘 ) = if ( 𝑘 = 𝑘 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 38 |
|
eqid |
⊢ 𝑘 = 𝑘 |
| 39 |
38
|
iftruei |
⊢ if ( 𝑘 = 𝑘 , 1 , ( 0g ‘ 𝑅 ) ) = 1 |
| 40 |
37 39
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝐼 𝑘 ) = 1 ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) = ( 𝑆 ‘ 1 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) = ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) |
| 43 |
42
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) ) |
| 45 |
2
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 46 |
5
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝐺 ∈ CMnd ) |
| 47 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 48 |
45 46 47
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐺 ∈ Mnd ) |
| 50 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 51 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
| 52 |
50 51
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Grp ) |
| 53 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 54 |
4 2 53
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 56 |
2 8 9 55
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
| 57 |
53 55
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 58 |
50 57
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 59 |
56 58
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) |
| 60 |
52 54 59
|
3jca |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 61 |
13 60
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 63 |
53 31
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑆 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 65 |
5 53
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 66 |
64 65
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 67 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 68 |
67 6
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) |
| 69 |
10
|
eqcomi |
⊢ ( -g ‘ 𝑃 ) = − |
| 70 |
69
|
oveqi |
⊢ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) = ( 𝑋 − ( 𝑆 ‘ 1 ) ) |
| 71 |
70
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) |
| 72 |
68 71
|
eqtrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
| 73 |
49 11 66 72
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ 1 ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
| 74 |
44 73
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑋 ( -g ‘ 𝑃 ) ( 𝑆 ‘ ( 𝑘 𝐼 𝑘 ) ) ) ) ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |
| 75 |
33 74
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝐶 ‘ 𝐼 ) = ( ( ♯ ‘ 𝑁 ) ↑ ( 𝑋 − ( 𝑆 ‘ 1 ) ) ) ) |